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1. Introduction

1. This paper is concerned with genera! nonlinea- clliptic partial differential
equations of second order for functions of two indepundent variables. New a
priori estimates for the derivatives of solutions of such equations are derived
and used to obtain various results. In particuiar, & proof is given for the exist-
ence of solutions of the boundary value problem for quasilinear eiliptic equations
in convex domains.

The basic device used in deriving the a priori estimates is a lemma (Lemma
2 of Section 3) expressing a relation between the distortion of a class of mappings
of & domain in the plane—this class includes the quasi-conformal mappings—
and the Hélder continuity' of the mappings in that class. The techniques used
here are closely related to those of C. B. Morrey in [13] and in his work on multiple
integral variational problems in the Calculus of Variations [14]. In addiiion,
extensive use is made of the theory of linear elliptic partial differential equationa
as developed by J. Schauder in [19].

Some of the theorems proved here have been extended to elliptic equations
in more than two independent variables; this extension will be presented in a
forthcoming paper.

We proceed to describe our main results.

2. One of the aims of this paper is to derive a priori estimates for the
derivatives of solutions z(z,y) of a general nonliear elliptic equation
(. F(z,yz,p,qrst) =0, 4F.F, —F, > 0.

Here p, - - - , t represent the partial derivativesof 2, p = 2z, , -+ , ¢t = 2z, and
F, = 3F/3r etc. The principal theorem to be proved in this connection, from
which the others follow by use of known theorems for linear elliptic equations, is

1A function ) defined in a set is said to satisfly a Halder condition, or inequality, in that
set if there exist two positive constants C, a (2 < 1) such that for any two points P, P’ of the
set the inequality | f(P) — f(P’) | < CPP’* holds, where PP’ denotes the distance between P
and P’. Tbe constants C and a are called the coefficient and exponent, or simply the constants,
of the Holder condition. A function satisfying s Hilder condition is sometimes said to be
Holder continuous, its Holder continuity being described by the Halder inequality.
103



14 LOUIS NIRENBERG

Theorem 1: Let z(z,y) be a function defined in a domain? D in the z,y-plane
satisfying there the elliptic partial differential equation (1.1).

Assume; (i) F has continuous first derivatives with respect to its eight
arguments (z,y,2,p,4,7,8,!) in an open set of the eight dimensional space contain-
ing the hypersurface (z,y,2(z,y), - - ,l(z,y)) given by the solution z(z.y). The
first partial derivatives of F on this hypersurface are bounded in absolute value
by a constant K.

(i) 2(z,y) has continuous first and second derivatives in ® which are
bounded in absolute value by a constant K, .

(iti) For any real numbers §,n the iiequality

(1.2) FE€+ FgndFm' 2 M8 + n)
holds for all z,y in D, where X is a positive constant.

Conclusion: In any closed subdomain ®, of D, the second derivatives of
2(z,y) satisfy a Holder condition whose coefficient end exponent depend only on
K, K, , ), and the distance from the closed subdomain ® to the boundary of ©°.

Additional a priori estimates for all derivatives of a solution of (1.1) in
terms of bounds of its derivatives of first and second order are derived, using
Theorem I, in §9. These estimates include those obtained by S. Bernstein [2]
and J. Schauder ([18), Sections 4,6) for solutions of equations of the form (1.1).
Our dc:ivation of the estimates from Theorem I uses results concerning just
linear elhptic equations—whereas their derivation involves the ‘auxiliary func-
tion’ of Bernstein. (Further references and remarks concerning the derivation
of a priori estimates for derivatives of solutions of (1.1) are given in §9, 1.)

Theorem I was developed principally in order to establish existence theorems
for nonlinear elliptic equations; it has been applied to sclve the Weyl and Min-
kowski problems in dificrential geometry in the large. (The solutions of these
problems will appear in a forthcoming issue.) The strength of the theorem lies
in the nature of the Hoélder condition arising in its conclusion. As an illustra-
tion of the manner in which it is used we deduce the following theorem con-
cerning compactness of solutions of noulinear elliptic equations.

Theorem 1I. Let z,(z,y),n = 1,2, --- , be a sequence of functions defined
in a bounded domain D in the z,y-plane, satisfying elliptic partial differential

fThe term domain is always used to denote an open point set. The term closed domain
denotes the closure of a domain. A point set is said to be a closed subdomain of a domain @
if it is a closed domain and is contained in Q.

TThis result has also been extended to the general second order elliptic equation of the
type (1.1) with any number of independent variables; but the final result for this general case
i8 not as strong as Theorem I, for, the coeflicient of the derived Halder inequality depends—-1.,
addition to the bounds for the second derivatives of the solution—on the modulus of continuity
of the second derivatives.
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ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 105
equations

FQ(I’y!z‘)p.’q.’r"sl)t") =0
in O.

Assume: There exist positive constants K, K, , A, independent of n, such
that z, and F, satisfv the conditions (i), (i) and (iii) of Thecrem I with respect

to these constants. Assume further that the 2, are uniformly bounded in absolute
value in D.

Cenclusion: There exists a subsequence of the z, which converges in © to
a function 2(z,y) having continucue first and second derivatives; these are the
limits of the corresponding derivatives of the members of the subsequence.
Furthermore, if the functions F, converge to a function F then the limit function
2 is a solution of the limit differential equation

F(I, Y202, ,2, 25y 249, 2,,) = 0.

Proof: From Theorem I it follows that the second derivatives of the z,
satisfy a uniform Hoélder condition (independent of n) in any closed subdomain
of . They are therefore equicontinuous in this subdomain. Because of the
uniform boundedness of the 2, and their first and cecond derivatives it follows
that we may select a subsequence z,, , of the z, , such that the 2,, and their first
and second derivatives converge in this subdomain. Since this is true for every
closed subdomain cf © we can—by choosing a suitable sequence of closed sub-
domains and by the usual diagonalization process—find the subsequence of
the 2z, which will converge (together with first and second derivatives) to a func-
tion z (and its corresponding derivatives) in ell of ©. The cunvergence is uniform
in any closed subdomain. The lusi statement of Theorem II follows immediately.

3. Theorem I is more than a theorem on a priori bounds of solutions of
elliptic equations. The Holder continuity of the second derivatives of the solu-
tion 2(z,y) of (1.1) is not assumed: it ie derived as a consequence of the other
assumptions. For this reason the theorem is also of interest ‘n connection with
the question of analyticity of sclutions of elliptic partial differential equations.
With its aid one mry weaken the couditions under which the analyticity of a
solution of (1.1) may be inferred when F is aralytic in its arguments.

The fundamental question concerning the differentiability and analyticity
of solutions of analytic elliptic partial differential equations has received con-
siderable atlention since the classical work of S. Bernstein [1]—the general
elliptic system of equations, with any number of both dependent and independent
variables was finally treated by 1. G. Petrovsky [15]. He proved the analyticity
of sufficiently often differentiable solutions of such analytic systems.

However, in all the proofs of the analyticity of solutions it is not sufficient
to assume that the solutions have continuous derivatives up to the orders that
occur in the equations. Usually further differentiability conditions are required.
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106 LOUIS NIRENBERG

Bernstein’s proof [1] of the analyticity of a solution 2{z,y) of the general second
order elliptic equation (1.1), where F is analytic in all its arguments, makes usc
of the assumption that z has continuous third derivatives. Later this resuit was
obtained by M. Gevrey [3], (see [12], pages 1320-1324, for further references),
and again by H. Lewy [10] who extended the solution z and the equation (1.1)
to complex values of the arguments z,y. Other proofs of the analyticity of any
solution z of a nonlinear elliptic equation of second order with any number of
independent variables were given by G. Giraud (4] and =. Hopf [5], under the
weaker assumption that z has continuous first and seccnd derivatives and that
the second derivatives satisfy Holder conditions. They also proved (5], Then-
rems IV and V, pages 211-2135), under the same sssumption on z, that if the
furction F has partial deriviatives with respect to all of its arguments up to
order 2 which satisfy Holder conditions, then the solution z of (1.1) possesses
derivatives up to order m+2 satisfying Hélder conditions. The question—
whether the continuity alone of the first and second derivatives of z implies
that z is analytic (when F is)—has remained open.

Theorem I settles this question and together with the results of Giraud and
Hopf implies

Theorem III:* Let z(z,y) have continuous first and second derivatives
and satisfy a: clliptic partial differential equation

F(z,y,z,p;q,e,c,t) =0
in a domain in the z,y-plane. Then

() i F is an analytic function of its eight arguments then z(z,y) is an
analytic function;

(b) if F has continuous partial derivatives with respect to its eight argu-
ments up to order m which satisfy Holder conditions (in these arguments), then
z possesses continuous partial derivatives up to order m + 2 satisfying Holder
conditions.

4. The proof of Thearem I is based on a result of C. B. Morrey concerning
linear elliptic equations (see Lemma 1 of Section 6, [13]). We give a new and
norz direct proof of this important result by a method which hes the further

advantage of admittiag a generalization to more independent variables. The
result is

Theorem IV: Let 2(z,y) be defined in a domain @ in the z,y-plane and
salisly the elliptic partial differential equation
(1.3) Az,, + Bz,, + Cz,, + D = 0.

Assume: (i) The coefficients A, B, C and D are functions of (z,y) bounded
in absolute value by a constant K.

‘Because of the result mentioned in footnote 3 this theorem may be extended to solutions
of ss:ond order nonlinear elliptic equations in any number of independent variables.
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(i1) z(z,y) has continuous first and second derivatives in @ and the first
derivatives are bounded in absolute value by a constant K, .
(11i)) For any real numbers {,n the inequality

(1.49) . A + Bgn + Cn' 2 Mg + 1)
holds for all (z,y) in @; here X is a positive constant.

Conclusion: In any closed subdomain ®, of @, the first derivatives of z(z,y)
satisfy & IIolder inequality with constants depending only on K, K, , A, and the
distance from the closed subdomain ® to the boundary of @°.

Theorem IV yields an estimate foo the Holder continuity of the first de-
rivatives of z, using, essentially, only the boundedness of the coefficients A,
B, C, D. E. Hopf ([15], Thcorem I, page 208) has shown that if the coeflicients
considered as functicas of (z,y) satisfy a Hélder condition, then Hélder inequali-
ties for the second derivatives of z in any closed subdomain may also be derived.

Since so little is assumed about the coefficients A, B, C and D—just that
they are bounded and satisfy (1.4)—Theorem IV is useful in studying nonlinear
elliptic equations. For example, the coefficients A, B, C, D may already involve
2(z,y) and derivatives of z(z,y) of any order, so that (1.3) may be nonlinear.
In fact, Theorem IV is employed in §8 to derive an existence theorem for quasi-
linear elliptic equations. There we prove the existence of a solution z(z,y) of
the boundary value problem for the general quasilinear elliptic equation of the
form

(1'5) A(z’ y? 2, zl’ ’ z')zll + B(z) y) 2, z‘ ’ z')z" + C(z) y! z, zl ’ z')z" b 0

in a convex domain in the plane.

Such an existence theorem was obtained by J. Leray and J. Schauder [9)
as an application of their concept of degree of raapping in Banach space.

In order to solve the boundary value problem for equation (1.5) one must
derive a priori estimates for its solutions. The interesting feature of our proof
of the existence of a solution is that, in obtaining a priori estimates, we use only
results concerning linear elliptic equations. This avoids the involved procedure
(due to Bernstein) used by Schauder to obtain a priori estimates for second
derivatives of a solution. (See [18], Section 4, where reference is made to pages
119-125 of {2].) In addition, the nature of the a priori bounds obtained here is
such that the notion of degree of a mapping in Banach space is not needed.
Instead we use a fixed point theorem concerning transformations in Banach
space due to Schauder [17]. Finally, we remark that the existence theorem in
(9] assumes more of the differential equation than our theorem in §8.

Morrey [13] observed that Theorem IV could be used to show the existence
of a solution of (1.5) but his proof contains a gap. Further remarks about the
work of Leray and Schauder, and Morrey, are made in the Outline of §8, 1.

Our existence proof makes use of Scl auder’s work [19] on linear second

300 the end of §4 for more general conditions under which the conclusion still holds.
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order elliptic equations. In order to be able to use his existence theorems con-
cerning such equations we derive in §6 a sharp form of Theorem IV which is
expressed as Theorem V, and which is of some intercst in itself (see remarks in
§6, 1). Theorem V contains extra conditions impcsed on the solution 2(z,y) of
(1.3) enabling one to calculate a Holder inequality for the first derivatives of z
in the whole domain @. These extra conditions are of the nature of assumptions
about the boundary of @ and the boundary values of 2(z,y).

5. The prrofs of the results described above are presented in §4, 5, 8 and 9—
the remaining sections contain snbsidiary lemmas which are employed in the
proofs. At the end of some sections remarks are inserted which show how the
principal results of the section may be strengthened. These remarks are not
used in our discussion of partial differential equations.

Theorem IV is derived as a simple consequence of a fundamental lemma,
Lemma 2 of §3, which concerns the Hélder continuity of a class of mappings
(including quasi-conformal mappings). This lemma and a few related lemmas
concerning these mappings are proved in §3 with the aid of another lemma
(suggested by K. O. Friedrichs), Lemma 1, of §2, 1. The proof of Theorem IV,
using Lemma 2, is then given in §4. The techniques used in these sections, §2—4,
are modifications of those developed by Morrey in his work on multiple integral
variational problems {14], and are, together with the proof of Theorem I related
to those employed by M. Shiffman in his proof of the analyticity of solutions of
multiple integral variational problems [20]. The proof of Theorem I is given in
§5 and consists in transforming equation (1.1) into equations similar to (1.3)
for the difference quotients of the solution of (1.1). Thus, for the proofs of
Theorem IV (and I) it is sufficient to read §2, i, §3, §4 (and §5), which are in-
dependent of the rest of the paper.

In §6 we prove Theorem V, the sharp form of Theorem IV, using (i) a
modification, Lemma 3’, of one of the lemmas on quasi-conformal mappings,
which in turn is proved in §7, and (ii) a sharp form of Lemma 1, Lemma 1’,
which is proved in §2, 3.

Section 8 treats the quasilinear elliptic equation (1.5). Using Theorem V,
and Schauder’s theory of linear elliptic equations [19], we prove there the exist-
ence of a solution of the boundary value problem in Theorem VI and derive a
priori estimates for all solutions. At the end of §8, in No. 8, we show how the
existence of a solution of the problem may be derived using Theorem IV instead
of Theorem V. This requires a slight modification of an existence theorem for
linear elliptic equations, due to Schander. This whole section is completely
independent of the rest of the paper except for reference to Theorems IV and V.

Finally in §9 we derive a priori estimates for derivatives of order greater than
two of a solution of (1.1) in a domain D in terms of bouuds for the derivatives
of first and second order. The estimates for the derivatives (of high>r order) in
closed subdumains of D follow from Theorem I with the aid of th:: theory of
linear elliptic equations in [19]. In order to obtain such estimates ir the whole
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domain D we derive first a sharp form of Theorem I, Theorem Vii. This con-
gists in imposing conditions on the boundary of D and on the boundary values
of the solution 2, which make it possible to conclude that the second derivatives
of z sutisfy a Hélder inequality in all of D.

2. A Lemma

1. Domains. A large part of this paper will deal with the derivation of
estimates for solutions of elliptic differential equations defined in domains D
in the z,y-plane. The estimates to be obtained are of two kinds: estimates of
values of solutions in closed subdomains of D and eztimates of ve'ues in the whole
domain D. The domains of definition O of functions for which estimatea of the
first kind will be derived may be arbi‘rary open scts ‘n the plane, which we
sometimes assume to be bounded. Estimates of the second kind, however, will
be derived oniy for functions in domains satisfying the following condition:
D is bounded by a finite number of simple closed curves which do not intersect;
each curve has a finite length and may be represented by functions z(s), y(s) of
arc length s, having cortinuous derivatives up to order m {an integer).

Definition: Domains having this property ~reas’’ ‘o be of type L., .

It 18 clear that the boundary curves of a ¢ ... ... of *;pe L, have bounded
curvature. In addition, in a neighborhood of .. - .ut on such a curve one of
the coordinates, say z, may be introduced a8 . - «cal parameter, so that the
curve may be represented (locally) by the :quauon y = f(z), where f(z) is
twice continuously diicrentiable.

2. Many of the estimates that will concern us are of the nature of Holder
inequalitics (see footnote 1, page 103) for functions, as in Theorem IV; to derive
such estimates for » function we need a means of estimating the difference of
the values oi the function at any two points in terms of the distance between the
points. The technique we will employ is to establish estimates for certain
double integrals involving the derivatives of the function, and then to derive
from these estimates the required Holder inequality for the function.

Of course the estimates of the double integrala must be of such a kind as to
imply a Holder inequality for the function. It is well known that having a
bound for the Dirichlet integral of a function does 70! enable one to estimate the
difference of the values of the function at twc points; something stronger is
needed. There are some integrals, involving the first derivatives of a function
which, together with appropriate estimates, have the required nature. In
terms of these estimates the calculation of the constants of the Holder inequalities
is in general not difficult. The difficulty which occurs in practice, in trying to
employ one ‘of these integrals in order to derive a Holder inequality for a func-
tion, arises in the attemp? to establish the appropriate estimates for the integral.

In his work on multiple integral variational problems C. B. Morrey derived
Holder inequalities i'or functions by establishing estimates of the “growth’’ of the
Dirichlet mtegrals of ihe functions over circles—as a function of the radius.
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110 LOUIS NIRENBERG

The fact that such growth estimates imply Holder inequalities was shown by
Morrey in a lemma stating (essentially) that if the Dirichlet integral of & func-
tion over every circle is bounded by Kr®, where K and « < 1 are positive con-
stants and r is the radius of the circle (this describes the growth), then the
function satisfies a Holder inequality with constants depending on K and «
(see [14], Theorem (2.1) of Chapter 2).

Tke original proof of Theorem IV of §1 devised by the author was more
closely related to Morrey’s proof than that to be presented here. There, as
with Morrey, the Holder inequalities for the derivatives p,q of the solution z
of (1.3) were obtained by the derivation of estimates of the ‘“‘growths” of the
Dirichlet integrais of p and ¢ (in a mapner more cdirect ikan Morrey’s) and by
use of Morrey’s lemma. Later K. O. Fredrichs observed that appropriste
estimates for another integral, which wouid imply Hslder continuity for p and ¢,
could be obtained somewhat more sin.ply; we shall follow his procedure here.

The integral to be used is expressed in (2.1), and we prove the analogue of
Morrey’s lemma, i.e. that estimates for the integral yield Hclder continuity, in
the following lemma. It is expressed in a form suited for application in §3 where
we shall derive Holder inequalities for (classes of) funciions in closed subdomains
of the domain of definition. In No. 3 of this section the lemma is stated in a
sharp form suited for application in §6 where Hélder inequalities for functions
in the wkole domain of definition are derived.

Lemma 1: Let p(z,y) be a function having continuous first derivatives
defined in a domain @ in the z,j~plane. Let @ be a closed subdomain of @ and
denote its distance from the boundary of @ by 2d. Assume that p(z,y) is bounded
in absolute value by a positive constant K, in @, and that there exist positive
constants M, a, < 1, such that for any circle C, with center in @ and radius
d the following inequality holds

@.1) [[re@ + o da < n.

Here dA represente the element of area in the circle C, and r the distance of the
point of integration from the center of the circle. Then the function p(zy)
satisfies a Holder condition in & with exponent a/2 and coefficient depending
only on K, , M, a and d.

The proof of the lemma is not. difficult but we present all details so that
they may be referred to in the proof of the sharp form in No. 3.

Proof: We wish to show that there exists a constant H depending only
on K, , M, « and d such that for any tv-o points P and P’ of ® the-inequality

P‘_Pv'all

holds, where PP’ is the distance between P and P’. Clearly if the distance

- — —— - —— ———— —
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PP’ between two points P and P’ of ® is not less than d then, since
lp(z’y) l S Kl )

Wa/: == da/l *
We need, therefore, consider only the case where the distance PP’ = s between
two poiats P and P’ of ® is less than d.
For any point (z,y) in @
[o(P) — o(P) | < |p(P) — p(z,3) | + | plz,p) — p(P) |.

Letting the point (z,y) range over the circie with the line joining P to P’ as
dianetcr, we integrate both sides of the incquality with respect ic (z.y) over
this circle (of diameter 8) to obtain the inequsiity

| pP) - p) |
(2.2)
< [[ 100 = paw 1z ay + [[ 1pz) = piP) | dz ay.

The first term on the right is certainly not decreased if we enlarge the domain
of integration to a circle C, with center P and radius 8. Since 8 < d, C, lies in
Q. Introducing polar coordinates (r,6) in this circle, and denoting by p/r,6)
the value of p at (r,0), we note— since p(r,6) — p(P) = [:p.(p,€) dp —that ‘he
first term is not greater than

L= [ [Jfo 19.(0,0) | dp] r dr do.

We now proceed to obtain appropriate estimates for I,. Integrating by
parts with respect to r, the integral I, may be written in the form
1 [] r" e . ,
I, = 2]; jo & — 1% |p, | drds.
Hence

I.Slzs’j;

where d4 = rdr dé,

[ o tarde =3 [ 115124

s fj r* ) p, | dA
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by Schwaiz's inequality,

T e al”

finally, by (2.1), since the last integral is not decreased if the integration is ex-
tended over a circle concentric with C, and radius d

@2.3) I, < ,/’%’ ERYS

The same estimate may he obtained for the second term on the right side
of (2.2). Therefore (2.2) yields the inequality

!i’ - 4 g'_MR’-/’
3 | PP P(P)|S\/ k.

[pP) = pP) |, 2M
Fl—)h/: —4 ™

since PP’ = s. The right side is clearly a constant depending cnly on M and a,
and the proof of the lemma is complete.

or

Remark: Clearly it is not necessary to assume that the first denivatives of
p are continuous; one need merely assume that the integrals occurring in (2.1)
exist and satisfy (2.1). This follows from the fact that we may approximate
p(z,y) by functions p, with continuous first derivatives, establish the Hoélder
condition for these functions, as above, and then let n - to obtain the re-
quired Holder condition for p(z,y)—after some slight argument.

In addition, if the domain @ and the set @ are bounded connected sets,
it may be shown that the coefficient in the Hélder condition of p(z,y) depends
only on M, a, d, and the diameter of @, and is thus independent of K, .

3. The following is a sharp form of Lemma 1 to L,c used in §6:

Lemma 1’: Let p(z,y) be a function having continuous first dcrivatives
defined in a domain Q of type L, (see No. 1). Assume that | p(z,y) | < K, and
assume that there exist positive constants d, M, a, a < 1, such that for any
circle with center in @ and radius d the following inequality holda:

2.4) [[ 7@+ edaa < m.

Here the integration is extended over the intersection C, of @ with the circle;
dA represents element of area and r the distance of the point of integration
from the center of the circle.




ELLIPTIC PARTIAL DIFFERENTIAl, EQUATIONS 113

Then the function p(z,y) satisfies a Holder condition in @ with exponent
a/2 and a coefficient that depends only on K, , M, a, d, and the domain Q.

. Proof: The proof is similar to that of Iemma 1 in No. 2, and in order to
make use of the calculations performed there, we adopt the following, seemingly
artificial, procedure.

Let P be any point of @. Consider a domain in the shape of a quarter circle
with P at the vertex, that is, a domain bounded by a circular arc with P as
center, and by two mutually perpendicular radii from P. If the length of the
radius of the circle is 8 we call such a domain Q2(P,s). From the fact that the
boundary cu:ves of @ have no corners it follows that for any point P of @ one
can find such a domsin Q(P,8) which lies entirely in @, at least for s sufficiently
small®. Cleerly for any point P and radius s there may exist many such domzins.

From the fact that @ is of type L, (in particular, since the curvatures of the
boundary curves are bounded) it follows that there exists a positive number d’,
which we can assume to be less than d, such that for any two points P and P’ of
@ whosee distance from each other, which we denote by s, is less than d’, there
exist two such domains Q(P,s), Q(P’,s) lying entirely in @ with the property that
the area of their intersection (which may be greater than s*/2) is not less than
/4.

We use domains Q(P,s) because the calculations performed on pages 111 and
112 for integrals in circles C, may be carried over for integrals in these domains.

We now proceed to establish the Hélder condition for p. We must show
that there exists a constant H depending only on K, , M, «, d, and the domain
@, such that for any two points P and P’ of @ the inequality

| p(P) — p(P) |
W./: <H

holds. Clearly if the distance PP’ > d’ then, since | p | < K, ,
|pP) = p(P) | _ 2K,
'ISP-/: = dre? :
Therefore we need only consider the case PP’ = s < d.
Let (z,y) be any point of @, then
[p(P) — p(P) | < |o(P) — p(z,9) | + | p(z,y) — p(P’) |.

Introduce the domains Q(P,s), Q(P’,s) defined above and integrate with respect
to the point (z,y) over their intersection. The inequality thus obtained is

419 — o) | < [[ 19F) = play) | dz dy
+ [[ 1) — 9P | dz ay,

*Since the boundary curves have no corners we may use—instead of a quarter circle—any
fraction of & circle less than §, i.e. any fraction bounded by two radii meeting at an angle less
than ». If the boundary had corners we could use any angle less than the smallest corner angle;
thus the lemma may clearly be generalized to hold for a wider class of domains,

P! 3
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where A is the area of this intersection. Since A i3 not less than s’/4 we have
8’
7190 = o) | < [ 19P) = plz) | dz dy ,

+ f f | p(z,y) — p(P’) | dz dy.

The first term on the right is certainly not decreased if we extend the domain of
integration to all of Q(P,s). Introducing polar coordinates (r 6) about P we see
that this first integral is not greater than

L= [ [ 160 i) eaa.

oP,e)

Following the procedure of No. 2 we obtain the same estimate (2.3) derived
there (for, the calculations performed there may be carried over to integration
in Q(P,s)),

—

4 l’ﬂ 3+@/3
I, £ -\1 % 8
The same estimate may be obtained for the second term on the right of the
inequality above. This inequality yields, therefore,

8_’ — ’ 2x M 3+0.3
7 |p(P) —pP) | < \/—a 8

or
| p(P) — p(F) | 2rM
o S

gsince PP’ = s. The right side is clearly a constant depending only on M and
a; the lemma is proved.

Remarks analogous to those at the end of No. 2 apply also to Lemma 1’.
If the domain @ is connected and bounded it may be shown that the coefficient
in the Holder inequality satisfied by p depends only on d, M, a, and the domain
@, and is thus independent of K, .

3. Holder Continuity of Quasi-conformal and Other Mappings

1. Functions p(z,y) and ¢(z,y), defined in & domain in the z,y-plane, define
a mapping of the domain into the p,g-plane. If p and ¢ are differentiable, the
mapping behaves like an affine transformation in the neighborhood of a point,
and takes circles either into ellipses or into line segments. In the former case the
ratio of the major to the minor axis of the ellipse is called the ‘‘eccentricity’’ of
the mapping at the point. If the eccentricity of the mapping at every point is
uniformly bounded the mapping is said to be of ‘‘bounded eccentricity.” For a
mapping p(z,y) ¢(z,y) which changes the orientation the property of bounded

o A
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eccentricity may be expressed analytically by the assertion that there exists a
non-negative constant &k such that the derivatives of p and ¢ satisfy everywhere
the inequality

(3.1) p.+o+ @i+ @ " k(pug. — 2.9,

Mappings p(z,y), ¢(z,y) satisfying (3.-) for some constant k are also called
‘“‘quasi-conformal.” They have many properties similar to conformal mappings;
for instance a maximum principle holds for each of the functions p, g; i.e., each
fuaction assumes its maximum and minimum on the boundary of the domain.
Note in particular from the following form of (3.1)

(orba) +(n-ta) + (- B+ @ 50

that if k£ < 2 the functions p, ¢ are conataant, and it k = 2 the functions ¢, p
satisfy the Cauchy-Riemann equations, i.e., the mapping is conforma!. Theie-
fore, the cnly values of £ that arc of interest are & > 2.

In this section we shall consider a class of mappings somewhat more general
in characicr, namely those satisfying an inequality

3.2) p: Fvst+ ¢+ ¢ < k(pg. — .90 + K

where k and k, are non-negative constants. We ghall prove that for all msppings
in this class the functions p(z,y) and ¢(z,y) satisfy a Hélder inequality with
constants depending on k and k, . This implies, for k, = 0, that all functions
P, ¢ defiring quasi-conformal mappings with uniformly bounded zccentricity
satisfy a uniform Holder condition. Such a Hélder inequality for quasi-con-
formal mappings was derived by Morrey [13] (Theorems 1 and 2 of Section 2)
for one-to-one mappings. Our mappings need not be one-to-one.

In order to obtain a Holder condition for p anad ¢ with constants in terms
of k and k, it is easily seen, as above, that the only values of k that are of interest
are k > 2. The object of this section is to prove the following

Lemma 2: Let p(z,y), q(z,y) be functions defined in 8 domain @ in the
z-plane, bounded in absolute value by & constant K, with continuousa first
dexrivatives satisfying the inequality

(3.2) r+o+ @+ @ < kpg — p.g) + K

in @, where k and k, are non-negative constants. In any closed subdomain ®
of @, the functions p and ¢ satisfy a Holder inequality with constants depending
only onk, k, , K, , and the distance from the closed subdomain ® to the boundary
of Q.

Before proving the lemma it is of interest to consider some mappings for
which Hélder inequalities may be established in all of @ Such cases occur when
something is known concerning the values of the mapping functions on the
boundary; one particular illustration of this is given by Lemma 4 of §6, 1. Other
cases of inwerest are those where p and ¢ admit extension to a larger domain O
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containing the closure @ of @ in which (3.2) is satisfied (with possibly different
constants k and k, depending on the original constants). Lemma 2 applied in D
then yields a Holder inequality for p anc ¢ in the closed subdomain @ of .
Extensions of this kind are possible, say by reflection, if something is known of
the nature of the boundary of @ and of its image. To illustrate this remark we

prove the following lemma, which will not be referred to in our discussion of
differential equations.

Lemma 2': Assume thut p{z,y), ¢(z,y) satisfiy (3.2) and map, continuously,
a closed domain @ bounded by a finite number of disjoint circles into a bounded
multiply -oi:nected closed domain @' l.aving the same property; nssume also that
each boundary ciicle is mapped into a boundary circle of @".7 Then p and ¢
satisfy a Holder inequality in @ with constants depending ouly on k, k, , and the
closed domains @, @’.

__Note that the mapping is not assvinzd to be one-to-one or onto the whole
of @'.
The mapping considered in the lemma is not as special as it appears; for,
by transformations of the variables z, y and the variables p, ¢ many mappings
z, y — p(z,y), q(z,y) may be reduced to this case. Under such transformations
of the variables z, y or the variables p, ¢, inequality (3.2) is transformed into a
similar inequality for the new variables, with new constants k, k, depending on
the stretching factor introduced by the transformation. In case of a conformal
transformation of either (z,y) or (p,q) variables the constant k is unchanged.

The proof of Lemma 2’ follows from L.emma 2, as indicated, by extension of
the mapping functions to a larger domain D by means of reflections on the
boundary circles of @ and @’. Before defining this extension however we first
map the p,¢g-plane one-to-one and conformally onto the p’,¢"-plane by means of a
bilinear transformation in such a way that @’ is mapped onto a closed domain Q"
also bounded by circles, and the outer boundary circle of @’ has unit radius, is
concentric with T (one of the inner boundary circles) and has the origin as center.
Combining the meppings we have a mapping p'(z,y), ¢’(z,y) of @ into @”. In
@, p’ and ¢’ satisfy an inequality of the form (3.2) with a different constant k,
which is easily calculated (it depends on the original k, and on the closed domain
(—z’, wkhile k remains invariant under conformal change of variables).

In order to derive a Hélder inequality for the functions p, ¢ in @ it suffices
to derive such an inequality for p’, ¢’. We deric this by extending the mapping
functions p’, ¢’ to a larger domain D by means of reflections in the boundary circles
of @and @". In D, p’ and ¢’ satisfy an inequality of the form (3.2) with again a dif-
ferent constant k, (k remaining invariant). Furthermore, in D, p’ and ¢’ are
bounded by the inverse of the radius of the circle I'. Application of Lemma 2 in
D now yields the desired Holder inequality for p’, ¢’ in the closed subdomain @.

"N othing else is assumed (in particular about regularity) of the mapping of the boundary.
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Clearly if @' is simply connected, i.c., bounded by one circle, the proof cannot
be carried out (for, on reflection, p* + ¢ may become infinite); in fact in this case
the assertion of Lemma 2’ need not be true, as a simple counterexample shows:
The functions ¢, + p. = (x + 1y)".n = 1,2 --. map (even conformally) the
unit circle z* 4+ 3* < 1 onto itself with boundary onto boundary, but do not
satisfy a uniform Hélder condition in the circle.

L. Ahlfors and M. Lavrentiev® have derived a Hélder inequality for one-to-

which preserve the origin and map bouidary onto boundary. The constants of
the inequality depend only on £. This result can be dorived as a simple ~onse-
quence of Morrey’s theorem for onc-to-vie quasi-corformal mappings and we
present a oroof using Lemma 2. We formulate the result as

Lemma 2"': Let p(z,y), ¢(z,y) define a one-to-one quasi-conformal mapping
(satisfying (3.1)) of the circle z* + y* < 1 onto the circle p* 4+ ¢° < 1 such that
thz origin is mapped onto the origir and boundary onto boundary. Then p and ¢
gatisfy in the unit circle a Hélder inequality with constants depending only on k.

As in the proof of I.emma 2’ the proof involves the extension of the definition
of p, ¢ to a slightly larger circle D of radius 1/p by refiection of a ring R,
p’ < r* + y* < 1, in the boundary circle whereupon Lemma 2 may be applied
in ®. In order to apply Lemma 2 a bound for p and ¢ in D is needed. We must
first show that the points (p(z,y), ¢(z,y)) for (z,y) in R are bounded away from
the origin. By the one-to-one property of the mapping its inverse z(p,9), ¥(p,9)
exists and is also quasi-conformal; in fact, it satisfies an inequality of the form
(3.1) in the circle p* 4+ ¢° < 1 with the same constant k. We inay apply Lemma
2 to this inverse mapping and conclude that there exists a circle C: p* + ¢° < o',
with o’ depending only on p and k, such that 2*(p.q) + ¥*(p,g) < »’. It follows
that p* + ¢° > »” for (z,y) in R, and hence p* 4+ ¢° < 1/p" throughout D.
Having a bound for p and ¢ in © we may apply Lemma 2 and derive a Hélder
inequality for p and ¢ in the closed subdomain z* 4+ y* < 1.

2. Lemma 2 is a consequence of the following lemma (which is used again
in §6, 2, 3 and §9, 3).

Lemma 3: Let p and ¢ be coantinuous functions defined in a domain @
and having continuous first derivatives satisfying the inequality

(3.2) P+, + gi + ¢ < k0. — p.g) + ks

in @, where k and k, are non-negative constants. Assume that [¢| < K, . Let
® be any closed subdomain of @ and denote its distance from the boundary of
@ by 2d. Then there exist positive constants M and a < 1 depending only on

$Lavrentiev derives this in §1 of “A Fundamental Theorem of the Theory of Quasi-
conformal Mappings of Two-dimensional Regions,’’ Isvestiya Akad. Nauk SSSR, Ser. Matem.

12, 1948, pp. §13-5654. [English version: A.M.8. Translation No. 29. Lavrentiev ascribes the
result to Ahlfors who did not publish it.
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k, k, , K, and d such that the following inequality holds

[[re@+o+a+dacay < i,

Cqe

where the integration is extended over any circle C, with centre in ® and radius
d; r denotes the distauce froin the centre of the circle to the point of integration.
The proof of Iemma 2 follows immediately from Lemmas 3 and 1.
The remainder of No. 2 and Nos. 3, 4, are concerned with the

Proof of Lemma 3: Consider any circle C, with centre in ® and radius
d and let C be a concentric circle with radius 34,2 (it lies in @) in which polar
coordinates (r,8) about the centre are introduced.

We introduce & function {(r) defined in the circle C with the following
properties: (a) ¢ is a continuous function of r alone, and is continuously differ-
entiable; (b) ¢ is identically one for 0 < r < d and decreases monotcrically to

zero as r tends to 3d/2.°

We multiply (3.2) by 7" °t?, where « < 1 i8 a positive number to be deter-
mined later, and integrate over C, denoting [fc r™ °¢’(p3 + pl) dz dy by I¢[p)
(and similarly for ¢); we obtain

Lol + Ielg) < & [[ 7 *r'@.0. — pag) dz dy

3.3)
+ K ff rtdzdy = 1.
[+

Our aim is to estimate the right hand side I of the inequality in the form I <
c(Iclp] + Iclg)) + ¢ where ¢ < 1 and ¢ are constants; this estimate, inserted in
(3.3) would yield & bound for I¢[p] 4+ I¢[g), and hence (by the property (b) of {)
a proof of Lemma 3.

Integration by parts of the first integral on the right (integrating thz
derivatives of ¢ yields the identity

By k[ Pma —pa)dzdy = =k [[ 0o ~ i) A ay.

Here the subscript r refers to differentiation with respect to r; r~“¢* is & function
of r alone. Since { vanishes on the boundary of C the integration by parts does
not give rise Lo a boundary integra!l; this is the reason for intrcducing . The
integration by parts would certainly be valid if p(z,y) had continuous second

*One may prove the lemma without introducing the function {; this would involve finding
estimates for integrals I(s) = [[c, r “(p} + p?) dz dy, over circles of radius ¢, from a differen-
tial inequality satiafied by I(s) as a function of s. The use of the function { was suggested by
Friedrichs in order to by-pass the differential inequality and to enable one to obtain the esti-
mates for I(s) directly.

it 4 it <+ —rerd——————
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derivatives. We may however approximate p by a sequencc of functions p,
having continuous second derivatives, whose first derivatives also approximate
those of p. Clearly the identity (3.4) holds for these functions p, and letting
n — o we see that (3.4) holds also for the function p(z,y).

Replacing the first integral on the right of (3.3) by the integral on the right

of (3.4), which we write as two integrals, we express I as the following sum of
integrals

(3.5) I=I:+I:+It,

where

I = —k fj 28, rqpir, — pury) dz dy,

I, = ka ﬁ. ' elpr, — pory) dz dy,
c
and

I, =k, ff r °¢* dz dy.
c

The integrals I, and I, are easily estimated in terms of I¢[p] + I-[q]. Con-
gider first I, ; since > < 1 we have

L 1-a
co  nsnffrea 2
c

Next,
I < 2 ff r* | qt, | VP! + i dz dy
[od

10
<k [ 71 + €060 + gl dz dy
wkere « is any rositive constant. Since ! ¢ | < K, we have

3.7) I < kek? [ o5t de dy + ke Lelp).

3. Estimate of I,. We note first that the tetin n,r, — p,r, in I, , expressed
in polar coordinates, is simply (1/r)p, , 8o that the integral

f (@.s. — pry) d6,

taken around any circle r = constant, vanishes. It follows that the double

WThis follows from the general inequality | ab| < §(«xa? + «~'V?), where « is any positive
uumber.
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integral

f 1O .r. = prr dr 4o

(4

vanishes identically for any function f(r) which is a function of r alone. Thus,
adding any function of r alone to ¢ in the integral I, does not change the value
of the integral. Let g(r) denote the value of ¢(r,8) for 6 = 0, g(r) = ¢(r,0).
Clearly g(r) is a function of r alone, therefore, as a consequence of the previous
remarks I, may be written in the form

3.8) I, = ka J-[f r g — Qpar. — par)r drde,

[

which we now pioceed to estimate:

I, € ka ff ot g — g vVP:+ pl)rdrde
[og

<k [P L7 - 0" + 9 + pllr dr s

= %’ r Ty drf (¢ — 9" do + %1 Ielpl:

Let us investigate the integral f (g—7)* d6 occurring above. By the defini-

tion of g, the function ¢ — g, considered as a function of 8, vanishes at § = 0.
We may therefore estimate the integral of the square of the function in terms of
the integral of the square of its derivative:

2w ’ 2 2w [
$a-aa0= [ ao[jo q.d¢:| < de(o-fo i d8)
by Schwarz’s inequality,
< 4 Jl;" qs dé.
Thus, since ¢ + g3 = ¢ + (1/r')q; , we bave
GO fa-D A< $@+ ).

Inserting this inequality into the last estimate for I, we obtain finally the
estimale

(3.10) I, < 2x%kalclq) + %’-Ic[pl-

4. Completion of Proof. We have derived the estimates for I 1,12, and I,
given by (3.7), (3.10) and (3.6), respectively. Inserting their sum as an estimate

ot —
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for I, into (3.3), we obtain the inequality

Lelp) + Lel] < (ke + %) 1clp] + 26'halclg)

+ kK’ ff ret dzdy + 2""“ (35")'

This inequality will enable us to estimate I¢[p] + I.[q] provided that each of the
corfficients of I¢[p] and I¢[q], on the right, is less than unit; (equals, say, 2/3).
This is achieved by choosing appropriate values for x and a whicb, up to now,
were arbitrary. Chooss a < 1 8o that

2x’ka < %
and then chooee « 80 that
-y ka2
k' + 2 — 3
With « and « thus fixed we have
e 6xk, (3d\*"*
Iclp] + Iclgl < 3kuK? ff Sz dy + 'a(?) .

The terms on the right are bounded, thus we have

where M is a constant depending only on k, k, , K, and d.
Since {(r) is equal to unity for0 < r < d,i.e. in (', it follows that

Ll = [[rerwi 4 azay > [[reGi + D dzay.
[ Ce
Thus
ff rp: + p)) dz dy + ff e+ ) dzdy < M,
Ce Ce

where M is a constant depending only on k, k, , K, and d. The inequality holds
for any circle C, with radius d and center in ®.
Thus Lemma 3 is proved.

5. Remarks. The assumption made in Lemma 3 that the first derivatives
of p and ¢ are continuous is unnecessary. It may be shown that it is sufficient
to assume that the first derivatives of p and ¢ are measurable, that integrals of

the form I.[p] and I[q] converge, and that inequality (3.2) is satisfied almost
everywhere.
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We note further that the bound | ¢ | £ K, was used only in estimating I, .
But, for this purpose a bound for the double integral of ¢* would have sufficed.
It follows, therefore, from the remarks at the end of §2, 2 that if @ and the
closed subdomain @ are bounded and connected then the functions p and ¢ of
Lemma 2 satiefy a8 Holder inequality in @ with constants which depend only
on k, k, , X, and d, where K, is a bound for the integral of the square of one of
the functions p, ¢ over the domain Q.

By a refinement of the argument on page 120 (and by a somewhat different
definition oi §) we may eliminate the factor 4x° in (3.9) and obtain a Holder
inequality for p and ¢ having as exponent any positive number less than 1/k.
By a somewhat different procedure, namely using “growth’” of the Dirichlet
integra' described in §2, 2, we may cbtain a Hélder inequality with exponent
equal to 1/k.

We note finally thut since the estimates used in proving Lemmas 2 and 3
are local the lemmas may be extended to non-planar domains, say domains on a
Riemann manifold.

The proof of Lemma 2 may be extended to quasi-conformal mappings in
any number of variables and yields a Hélder inequality for such mappings.

4, Proof of Theorem iV
Let z be the given solution of

(1.3) Az,, + Bz,,+Cz,,+ D =0

occurring in Theorem IV. To derive the Holder inequality satisfied by the
first derivatives p = z,, ¢ = z, of z it is sufficient, in view of Lemma 2, to prove
the following

remark: If z 18 a solution of (1.3) satisfying conditions (i)-(iii) of Theorcm
IV then p and q satisfy an inequality <{ the form (3.2), with constants k and k,
depending only on K, K, and X of conditions (i)-(iii).

The proof of Theorem IV then follows imruediately from Lemma 2 which
may be applied, since p and ¢q are bounded by K, .

The Remark is eazily proved: Dy the ellipticity of the equation (see (1.4))
the function C is pcsitive, 8o we may divide equation (1.3) by C:

(4.1) Ep, + Fp, + 4, + G = 0,

where E = A/C, F = B/C,G = D/C. From the conditicns (of Theorem IV)
on 4, B, C, D it follows that the coeflicients E, F, G are bounded in absolute
value by K/)\ and that for any resl numbers £, 5 the inequality

(4.2) B¢+ Fen+ 0 2 @ + o)

holds in Q.
Consider the pair of equations satisfied by p and ¢

4.1) Ep,.+Fp,+ ¢, +G =0,

— = —— s
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and
(4'3) Pv — Q€ = 0;
equation (4.3) is an identity in (z,y). Multiply (4.1) by p. , (4.3) by p, , and
add; after transposition of some terms to the right side we obtain
Ep. + Fp.p, + P, = P.9. — P.q, — GP. .
By (4.2) the left side of this equation is not less than A(p} + p))/K so that

A
R(p:'*'p:)SPUQl'—Z’IQv_GP-'

Since | G | £ K/\ we see that

|Gp. | < B (e +7'p)),

where ¢ is any positive number (see footnote 10 on page 119). Inserting this into
the previous inequality which we multiply by K/A we obtain the inequality

s : K . =i
m+m57@&—mw+ﬁm+cw.

Now choosing ¢ 50 that K’¢™'/2\’ = any number less than one, say 3,
c = K*'/\!

we find

2K K*
p: + P: S T (quc . P.Q.) + 7-
Simiiarly we may show that

2! K
¢+¢S§@@—mw+y
so that, on addition

: 4K . . 2K
(4.9 ﬂrﬁ+¢+¢$7@&—mw+7n

which has the form of (3.2).

Remark: Following the remarks of §3, 5, it may be shown that in deriving
a Holder inequality for the first derivatives of a solution z of (1.3) it is suthicient
to assume that p and g are bounded, and have measuruble derivatives, that
integrals of the form (2.1) converge, and that (4.1) and (4.3) are satisfied almost
everywhere. In fact if @ and the closed subdomain @ are bounded and con-
nected sets it follows from the Remark of §2, 2 and from Lemma 3 that the
bound for only one of the functions (say | ¢ | < K,) is needed.
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We note further that the syatem of equations (4.1) and (4.3) for p and ¢ is
elliptic. One may show in a similar manner that tvo functious p and ¢, which
are solutions of a general linear elliptic system of two equations of first order,
satisfy a Hélder condition whoee constants may be estimated as above. This
was also done by Morrey in [13].

5. Proof of Theorem I
We consider the differential equation

(1.1) F(z,y2,p,q,r 80 =0

in the domain D. Let @ be anv closed subdomain in $:; deno’e its distance from
the boundary of D by 2d. Let @ bc ihe open domain congisting of sll points in
D whose distance from the boundary of D is greater than d. Clearly @ contains
®. Denote the closure of @ by a.

Iet (x,y) be any point of @ and define the difference quotient

z‘(z,y) - z(z +* h)y’). - :(z,y)

where k i8 a positive constant less than d. Consider the differential equation

F(z,y,z,z., tty2,,) =0

at the points (z + A,y) and (z,y). Subtraction of these expressions results in the
equation

F(z + h’ Y, z(z e h: y)v Z,(I + h; y)) ) z,,(: + h; y))

= F(I, v, z(z, y); 2,2, y)) SRy Z,,(I, y)) = 0.
The left hand side may be expressed by

j; % F(z + fh.l/, (l - f)l(z,ll) + rz(z + h.l/), *tty (l - f)’-n(z.ll)
+ =2,,(z + &) dr
=hiF, + Fz' + FA + Fa, + Fai. + Fal, + Fal,)
where in general ¢ represents

3 = j; ¢(z + 7h)y) (l - T)Z(I,y)

+ 2z + ), -0, (1= 1z () + 72,(z + b)) dr.

The difference quotient z* evidently satisfies the linear differential equation
Fio+ F, + Fa, + FA+FL +F2 +F, = 0.

Since the first derivatives of F are continuous, and since @ is closed, we may be

sure that for k sufficiently small the functions F, , F, , - - - , F, differ but slightly

s S s e 0 0 O
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from F, , F,, .-+, F, and hence are bounded by 2K (K being the given bound
fOl‘F, ,F., s ,F,).
Furthermore, we may be sure that for all real numbers ¢, 1,

F& +Fin+ Fq' 2> ?‘2'(5’ + 9

for all (x,y) in @. Since 2z} and 2} tend to z,, and z,, as h — 0 they are bounded
by 2K, for h sufficiently small. These statements follow from assumptions
(1), (i) and (iii) of Theorem 1.

The equation which z* satisfies may be written in the form

(5.1) Fal, + FA, 4 82 +D=0

where D := f‘,_z’,' + 17',2‘_—}- F.2* + F,. Note that for h sufficiently small
4y F,,F,,F,, D, are bounded by a constant depending on K and K, ,
(1) 2%(z,y) has continuous first and second derivatives, the first Jeriyatives
being bounded by 2K, in @.
(iii) For all real numbers ¢, n the inequality

F&+ Fan+ Pl 25@ + 1)

holds for all (z,y) in Q.

Theorem IV proved in §4 may therefore be applied to equation (5.1) in
the open domain @, and we find that z; and 2, satisfy a Hélder condition in the
closed subdomain ®, with constants dependir.g only on K, K, , A and d. That
is, this Holder condition is independent of the value of h. Letting h — 0 we
gsee that the limit functions lim,, z; and lim.-, 2, satisfy the same Holder con-
ditions; these lbnit functions are simply z,, and z,, .

Similarly we may show that z,, satisfies the same Holder condi ion in @ and
Theorem I is proved.

As mentioned at the end of the previous section, the ~esults of Thevrer: IV
may be established for . system of <lliptic equations of first order in twe fune-
tions p(z,y) and 7(z,y). Theorem I may therefore be extended to a nonlinear
system in two iunctions p(z,y), q(z,y). The statement is the following:

If p(z,y) and ¢(z,y) have continuous first derivatives and satisfy a general
(nonlincar) elliptic system of first order then the first derivatives of p and ¢
satisfy Hoélder conditions in any closed subdomain of the original domain,

The author has generalized this result to the most general elliptic system of
equations for functions of two independent variables. This result will appear
in a later communication.

Another generalization of Theorem I is mentioned in footnote 3, page 104.

6. A Sharp Form of Theorem IV

1. In this section we shall modify Theorem IV by making additional
assumptions which enable us to derive s Holder inequality for the first derivatives
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of the given solution z(z,y) of (1.3) in the whole domain @. We consider func-

tions z(z,y) which are defined in the closure @ of a domain @ of type L, (see §2, 1)

and satisfy the condition: _

(A) z and its first and second derivatives are continuous in @, and the boundary
values of z, regarded as functions of arc length, have continuous first and
second derivatives—the second derivatives being bounded in absolute
value by a constant K, .

We now restate Theorem IV in a sharper form as

Theorem V: Lot z(z,y) be defined in @ aud satisfy the elliptic differential
equation

(1.3) Az,. + Bz,, - Cz,, + D =0

in @. Assume that coaditions (i}-(1i1) of Theorzm IV are satisfied and assatae
further tha! z satisfies cenuition (A).

Conclusion: The. first derivatives of z satisfy a Holder condition in @ with
coefficient and exponent depending only on K, K, , K,, X (of conditions (i)-(ii)
and (A)) and the domain Q.

We prove, really, a more general statement from which Theorem V follows.
This is a generalization of Lemma 2 of §3.

Lemma 4: Let z(z,y) satisfy condition (A), and assume that the first
derivatives p, ¢ of z are bounded in absolute value by a constant K, and satisfy
the inequality (3.2)

p:+7,+ ¢ + g < kpg. — p.g) + ki
in @, with k and k, non-negative constants.

Conclusioi. p and ¢ satisfy a Hélder condition in @ with coefficient and
exponent depending only on k, k, , K, , K, and the domain Q.

That Theorem V is an immediate consequeuce of Lemma 4 may be seeu
with the aid of the Remark at the beginning of §4.

Lemma 4 may be strengthened: if, instead of using the bound X, for the
second derivatives of the bounaary values, we indroduce a Uound K, for the
integral of the squares of these second derivatives—with respect to arc length
along the boundary—then, with the aid of the remarks at the end of §7, we may
nbtain a Hélder inequality for p and ¢ with constants depending only on k, k, ,
K, , K, and @. This stronger result will not be used.

Lemma 4 is related to certain results obtained by J. Leray in a paper (7]
concerning nonlinear elliptic equations of second order. in Secctions 5, 6, 10-12
of (7] Leray derives an estimate of the modulus of continuity of the first derivatives
of a solution of a nonlinear elliptic equation of the form (1.1)—making use of
an inequality of the form (3.2) for the derivatives of the solution and of ad-
ditional properties of the differential equation. Iemma 4, however, yields an
estimate for the Holder continuity of these first derivatives.

[ —— . . e < e
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2. Outline. Lemma 4 will be proved by generalizing the arguments used
in §3 to prove Lemma 2. There, in proving first Lemma 3 (§3, 2) we derived
estimates for integrals of the form

(6.1) ff (e + 9, + ¢: + ¢ drdy

(see (2.1)) over circles C lying entirely inside the domain. Iemma 1 implied
that p and ¢ satisfv a Holder condition in a subdomain of @. In the present
discussion we shall derive estimates for such integrals over the intersection of
@ with all circles C having some fixed radius and centre in @, Tie derived
Héldei miequalities witl then follow from Lemma 1°.

The estimates for integrels over circles lying cntirely inside @, away from
the boundary, are already furnished by Lemma 3. The proof of Lemma 3 is to
be generalized to yicld estimates for integrals over circles which intersect the
boundary of @ (the intcgrals extend only over the pari of the circles lying in
@). In order to motivate the discussion below, imagine the argument given
in §3, 2—4 for the proof of Lemma 3, applied now to a circle C, which intersects
the boundeary of @; let us see how far it may be extended. As we shall see, it
may be carried over completely, with minor adjustments, except in one particular.
It involves an integration by parts (see (3.4)), which in §3 yielded no boundary
integral, but which here gives rise to an integral on the boundary of @; in order
to carry through the rest of the argument it is necessary to obtain estimates for
this boundary integral. Upon examination of the terms in the integral it is seen
that the functions p = 2, , 7 = 2, occur in the form ¢(p, dz + p, dy) = ¢p.d, ,
where p, is the derivative of p with respect to arc length s on the boundary; it is
apparent that this integral may be estimated, provided that a bound for | p, | on
the boundary of @ is know: ( | ¢ | is bounded by K,). The function p, = (2,),
is a combination of second derivatives of the function z; of these a bound K, is
known only for the second derivative of z along the boundary with respect to
¢ (by condition (A)). Thus a bound for p, is kncwn (leading to an estimate for
the boundary integral) only if, on the boundary, p is tue derivative of z with
respect to 8, i.e., only if the part of the boundary which intersects C is a straight
segment parallel to the z-aris. )

It now becomes clcar how we should proceed in order to obtain the estimates
for the integrals (6.1) over circles C which intersect the boundary of @. First
we map the boundary (at ieast locally) into a straight segment I'—this being
achieved by a local transformation of variables—then we follow the argument
described above, to obtain estimates for the integrals over the intersections of
the domain with circles C which intersect the straight segment I'. On reintro-
duction of the original variables these estimates yield the desired estimates for
integrals over circles intersecting the boundary of Q.

In order to carry out this procedure we formulate first the result which one
obtains on applying the arguments of §3, 2-4, used in the proof of Lemma 3, to
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a circle which intersects the boundary of @ in a siraight segment. Its proof,
which is somewhat lengthy, is postponed to §7.

Lemma 3': Let p(z,y), ¢(z,y) be defined in a domain @ in the z,y-plane
and satisfy all the conditions of I.emma 3. Assume that part of the boundary
of @ consists of a straight segment I', which we may suppose to be nn the r-axis,
and that p. ¢ and their derivatives of first order may be defined on I' 8o that they
are continuous in @ + I'. Assume finally that on I' the counditio.:

IpxISKI

is satisfied, where K, 18 some positive constant.

Consider a point. P in @ whoze distance from any boundarv point of G not
on T is net less thra some positive eonatant 25, Denote by . the intersection
of @ with a circle having centre P and redius e.

Conzlusion: There exist positive constants M and a < 1, depending only
on k, k, , K, , K, and ¢ such that the inequality

ff r@ 4+ + ¢+ )drdy < M
Ce

holds.

3. Proof of Lemma 4. With the aid of Lemma 3’ (which is proved in §7)
we proceed now with the details of the outline for the proof of Iemma 4. The
discussion is mainly a technical one, no new ideas are involved, but it is pre-
sented at length in order to make clear how a similar procedure, described in
§9, may be carried out.

In order to prove Lemma 4 it is sufficient to show that there exist positive
numbers d’, ¢/, M’ and o’ < 1 depending only on k, %, , K, , K, and the domain
@, sucis that

(6.3) [[r@+n+a+@day <,
Ce*

holds, where C.. denotes the intersection of @ with a circle of radius ¢’, having
as centre any point F whose distance from the boundary of @ is less than 2d’.
For, if such numbers have been found, consider the closed subdomain ® con-
sisting of all points of @ whose distance from the boundary of @ is nnt less than
2d’'. All the conditions of Lemma 3 are satisfied; applying the lemma to the
subdomain @ we conclude that there exist positive numbers M, and a, < 1 such
that the inequality

[[ro@+n+ad+dddy<m,
Ce*

holds, where C,. is any circle with centre in ® and radius d’. Setting now
a = min (a’,a;)
M = max (M',M,)

d = min (¢',d',1),
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we may combine the last inequality with (6.3) and conclude that the inequality

(6.4) ff re@l+ o+t +g)drdy< M
C¢

holds, where C, represents the intersection of @ with any circle having centre in
@ and radius d. The conciusion of Lemma 4 now follows by use of Lemma 1’.

Vith the aid of Lemma 3’ we proceed to find the numbers d', ¢/, M’ and
a'. We find first the ccnstant d’ which is determined by the domain @ alone.
Let @ be a boundary point of @. Since @ is of type L, (see §2, 1) the boundary
curve containing this point may be represented by an equation of the form
y = Jz) in a neighborhood of Q, and we may iniroduce

(6.5) t=z, n=y— fz)

as new independent variables in a neighborhood of Q. There exists then a
circie with centre Q having the properties: (a) it contains an arc of the boundary
curve coataining Q and no other boundary points of @, (b) the transformation
(6.5) maps this circle in a one-to-one way onto a domain in the £ n-plane.
Clearly the arc of the boundary curve which contains Q and lies in the circle is
mapped onte a segment of the line n = 0. Thus, if the image of the part of the
circle lying in @ is denoted by Q, @ has a segment on the &axis as part of its
boundary. In the circle about @ the function f(z) and hence the functions
¢(z,y), n(z,y) have continuous second derivatives. Introduce K, an upper bound
for the derivatives of £ and n in the circle, so that ¢ and g satisfy the inequalities

(66) :Etlrlﬂti""rlﬂulsl_(°

Such a circle may be drawn about every boundary point Q, and since the
boundary of @ consists of a finite number of closed curves (having finite length)
we conclude that there exist positive constants d' and K such that every circle
with centre on the boundary of @ and radius 4d’ satisfies conditions (a) and (b)
(of the previous parngraph), and such that new variables ¢, n introduced in these
circles (as described by (6.5)) satisfy {(6.6); ¢’ iz thus determined.

Before proceeding to determine the constants ¢’, 3’ and a’ we note that
lengths are not stretched too much under the mapping of the circles (of radius
4d’) about boundary poin's, described by (6.5). Namely, it is easily scen that
there exists a positive constant x, depending only on K, such that the distance
l between any two points of such a circle and the distance I’ between the image
points under the mapping satisfy the inequality

l
l

To find the constants ¢’, M’ and o’ let P be any point of @ whose distance
from the boundary of @ is less than 2d’, and let Q be a boundary point of @
nearest to P. With Q as centre draw a circle of radius 4d’. From the definition
of d’ it follows that new variables {,n may be introduced, as described above,
mapping the circle onto a domain in the ,7-plane. As before, denote by Q the

(6.7) k<7<«

ABBABE LRI 5 i i s e was ik hsd
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image of the part of the circle lying in @; 2 has a segment on n = G as part of
its boundary. Since the distance of P from the circumference of the circle about
Q is not less than 2d’ it follows from (6.7) that the distance of P’, the image of
P, from any boundary point of Q not on n = 0 is not less than 2«d’. Setc = «d’.

In Q@ the function z of Lemma 4 may be regarded as a function of §, 1,
which we denote by 2'(¢,n). What properties does the function z’ have as a
consequence of the assumptions of Lemma 4? First, it is easily seen from these
assumptions, and from (6.6), that the derivatives of 2, p’ = 2{ , ¢’ = z,, are
bounded in absolute value by a constant K; and satisfy an inequality

pi + ol + o' + ¢ S K(pigt — pigd) + &,
where K! | ¥ and ki are constarnts depending on K, , k. %, and K. Furthermore,

it is seen from ~ondition (A), assumed in Lemma 4, that on the segment of
n = 0 which helongs to the boundary of Q, the inequality

Ipe | = |2t | < K

holds, where K} is a constant depending on K, and K.
We note, finally, as a consequence of (6.6) and of the boundedness of p’
and ¢’, that at corresponding points (z,y), (¢,7) the inequality

(6.8) et +a+a <@+t +¢+ D

holds, where «, is a constant depending only on K, and K ((6.8) is used later).

From the properties described above it is clear that the functions p’ and
¢’, satisfy in Q all the conditions of Lemma 3'. The domain @ and the point
P in the lemma are replaced by 2 and P’, and the constants &, k, , K, , K, and
¢ of the lemma are replaced by k', k{ , K{, K; and ¢ = «d’. From the conclusion
of Lemma 3’ we infer that there exist positive constants M and a’ < 1 depending
only on &', k{ , K{ , K; and ¢, such that the inequality

(6.9) [[ o= +o0+ a7 + gD dtan< M
cl‘

holds, where C! is the intersection of Q with a circle of radius ¢ about P’, and p
denotes the distance from the point of mtegration to P’.

On reintroduction of the variables z,u the integral over C! may be con-
sidered as an integre! over a domain in the z,y-plane (the Jacobian of the trans-
formation ¢(z,y), n(z,y) is unity). From (6.7) it follows that this domain con-
tains the intetsection of @ with a circle having centre P and radius

x = O d’.

Set ¢’ = x’d’—this is the desired constant ¢’—and denote the intersection of @
with this circle by C.. . It follows further, from (6.7), that if r is the distanuce
of a point of C.. from P, and p the distance of its image from P’, then

r 2 «xp.
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From these remarks we infer that

ff U@+ P+ ¢+ Q) drdy < ff e+ P+ gl + @) didn
Ce C'e

7aN

e f[ ok o+ g+ g+ D didn,

C'e

< x'°'x.(ﬁ + j:f p* dt dn)
c.

< a constant M’,

in virtue of (G.8),

in virtue of (6.9),

so thet (5.5) is proved.

We have found the constants d’, ¢/, M’ and a’ < 1, depending only on &,
k, , K, , K, and the domain @, and proved that with these constants the in-
equality (6.5) holds. This completes the proof of Lemma 4.

7. A Special form of Lemma 3.

This section is devoted to a proof of Leinma 3’, which was used in §6, 3 to
prove Theorem V.

Lemma 3': Let p(z,y), 9(z,y) be defined in a domain @ and hav~ continuous
first derivatives satisfying the inequality (3.2) or

(7.1) P:+ 9.+ ¢ + g, < kKpg. — p.q,) + ki

in @, where k and k, are non-negative constants. Assume that part of the
boundary of @ consists of a straight segment I', which we may suppose to be
on the z-axis, and assume that p,g and their derivatives of first order may be
defined on TI'so that they are continuousin @ + I'. Assume finally that| ¢ | £ K,
and thaton T

(7-2) IP: | S K)

where K, is some positive constant.

Consaider a point P in @ whoae distance from any boundary point of @ not
on T is not lcss than some positive constant 2¢. Denote by C. the intersection
of @ with a circle having centre P and radius c.

Conclusion: There exist positive constants M and a < 1 depending only
onk, k,, K,, K, and ¢ such that

[[7@+5+¢+dydzay < m.

Ce

The proof proceeds in & manner similar to that of Lemma 3 in §3, 2-4;
rather than rewrite all the details we present merely the modifications due to

L e R L AR e S I
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the additional assumptions, and refer whenever possible to the calculations
given there.

Proof: Denote by C the intersection of @ with a circle having centre P
and radius 2c. If the distance from P to T is less than 2¢, which is the case
of most interest te us, the boundary of C consists of a circular arc and a straight
segment I''. Asin §3, 2, we define in C a function {(z,y) which depends on the
polar coordinate r (distance from P) alone, is identically one for 0 < r < ¢ and
decreases monotonically to zero as r tends to 2c. We follow the procedure of
that section; multiply (7.1) by r~“¢? and integrate over C to obtain (3.3). Here
a < 1is a positive constant to be determined later. Then perform the integra-
tion by parts as indicated there. This gives rise to a boundary integral over
I, since ¢ does not vanish along I''; theretore the expression (3 5) for 1 (ike
right side of (3.3)) is modified by the addition of this boundary integ:al:

(7-3) I“I|+Iz+la+lo

where I, , I, and I, are the integrals defined on page 119 (integrated over C),
and I, is the boundary integral

I, =k fr r*t’q(p. dz + p, dy)

=k [ vz,

gince 1" is a segment ou the z-axis.
/Y

—

g H r

Region of Integration
Ficuzs 1

We must now obtain estimates for the integrals I, to I, in terms of I.[p] +
I.[q). The integral I, is bounded as in §3, 2 by (3.7), in terms of an arbitrary
oonstant x, while a bound for I, is given by (3.6). The integral I, is easily
~stimated, using (7.2) and the inequality | ¢ | < K, ,

L<k[ re il

< kK.K, fr' r* dz

-
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since {* < 1, finally
2¢

(7.4) LS KK, [ |21 da = 21"L—'K’(2c)"°.
o -

We must modify the argument for estimating I, given in §3,3. Consider
Lo ke f f e (pr, — por)r dr d8
[

where (r,6) are polar cocrdinates about P. Since p,r, — p.r, = 1/r p, we note
that the integral

50) = [ (o, = pir) do

—taken around the arc of the circle r = constant, which lies in C and has end
points P, , P, (see sketch)—is given by

» 1

p(r) = ” (P(P>) — p(Py)).
Introducing the function g(r) = ¢(r,0), as in §3, 3, we subtract and add g(r) to
g(r,6) in the integrand in I, and write the integral as a sum of two integrals

I: = I; + I;”
with
15 = ka [[ 700 — Qs — pardr dr ds,
[ o4

and
2 = ka f[ r ' ep,r. — par)r drdé
(o

= ka j;u r*’gp dr.

The integral I} is similar to the expicssion. (3.8) and may be estimated i1 a
similar manner, 8o that the estimate (3.10) holds for 1 .
To estimate I;’ we observe that the term

B0) = Py - p(PY),

which occurs in the integrand, may be bounded by
Ii(r) | < 2K, .

This follows from (7.2). using the theorem of the mean, and from the fact that
the distance between the points P, and P, (which lie on a circle of radius r) is not
greater than 2r. Since | ¢ | < K, and {* < 1 it follows that

2¢
f pres. 2/«.1( K,

i’ < 2kaK K, (2)'"*
]
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Adding this estimate for I}’ to the estimate (3.10) which holds for I; we find
I, < 2x'kalclg) + 3 kalclp) + 72— kK Ka(20)' ™.

Combination of this estimate with (3.7) for I, , (3.6) for I, and (7.4) for
1, yields a bound for I (given by (7.3) which, when inserted into (3.3), yields

Iclp] + Icigl < A(x,a)Iclp] + Iclg)) + B(x,a)

where A(x.x} and B(x,a) are constants depending on x ead a (which up to now
are arbitrary) and also upon &, %, , K, , K, and ¢. Asin §3, 4, we may choose

“a and « 5o thut 4(x,«a) is less than unity—say 2/3. Then

Tcw) 4 Iclg) < 3B(x,a).

Since {{r) iz equal to unity for 0 < r < cit follows that
Iep) = [[ 0@ + i azdy > [[ 7ol + ) dray,
[of Ce

where C. is the intersection of @ with a circle with centre # and radius ¢. Thus
from the estimate for I.[p] + I.[g] we find

ff @i+t e+ ) <M,
Ce

where M and a < 1 are positive constants depending only on &, &, , K, , K, and
¢; Lemma 3’ is proved.

Remark: In this proof the bound M depends on the bound K, for | p, | on
I'. By modifying the proof slightly it is possible to st.ov that M depends merely
on K,—ir addition o k, k, , K, , ¢ —where K, is a bound for the integral of p}
along T.

8. Quasi-linear Elliptic Differential Equations

1. Outline. ~An application of Theorem V to quasi-linear elliptic egua-
tions will now be presented. We will consider an elliptic equation of the form

(8°l) A(z’ yl z’ zl’ ? zl)zl’l + B(Il yl zl zl’ ’ z.)zl. + C(z’ y’ zl zl’ ¥ z.)z.. = 0

in a convex domain, and prove the existence of a solution taking on givea
boundary values. The existence of a solution of this boundary value problem
was first derived by J. leray and J. Schauder [9] as an application of their
theorems concerning the degree of a mapping in Banach space. They assumed
that the coefficients of the equation are twice differentiable with respect to all
arguments. Previously similar existence theorems had been derived—but
under additional assumptions. Schauder proved the existence of a solution
under the assumption that the problem of the corresponding general inhomo~
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geneous equation, with an arbitrary given function of z and y on the right side,
and with arbitrary prescribed boundary values, has at most one solution [18).
Much earlier S. Bernstein [2] showed the existence of a solution under the
assumption that z does not occur in the coefficients (they are functions of z,
yl zl ? z')‘

The fellowing approach is used here, as well as by Leray and Schauder:
We solve the linear equation''

(8.2 Az, v,2,2.,2)2,, + B(x,y.2,2,,2)2,, + C(z,y,2,2,,2,)2,, =0

for a function Z(z,y) which takes on the prescrihed boundary values ¢ and
which corresponds to every function z(z,y) belonging to a suitably defined class
o! functions. The function Z defines a transiormation Z(z) of the class of
functions z. This class of functions belongs to a Banach space and is mapped—-
under the transformation Z[z]—back into the Banach space. The problem of
showing the existence of a solution assuming the given boundary values is thus
transformed to that of finding a fixed point of this transformation (or mapping).

Ieray and Schauder carried this out by looking for zeros of the mapping
2z — Z[z]. They studied the degree of this mapping at the origin (in the Banach
space) by embedding it in a one-parameter family of mappings for which the
degree of mapping is invariant. This family was constructed by solving the
above equation for a function Z, which takes on the values k¢ on the boundary,
k being a parameter which is allowed to vary from zero to one. For k = 0 the
solution is Z = 0 and the mapping z — Z,[z] reduces to the identity—for which
the degree is unity. Thus the degree of mapping is unity for all k, in particular
for £ = 1, and therefore the equation

z—22)=0

has a solution. To make sure that the degree of mapping does not change as k
varies it was essential to know that no solutions of the equations z — Z,[z] = 0
occur on the boundary nf the class of functions considered (in the Banach space).
Thus certain a priori bounds for solutions of the equations z — Z,{z] = 0 had
to be established.

Our mecthed of finding a fixed point of the transformation Z[z] is to use a
fixed point tk:orem, due to Schauder [17], concerning completely continuous
transformations in Banach space. (A transformation of a Banach space into
itself is said to be completely continuous if it maps bounded sets into compact
sets). The theorem states: Let T be a complelely continuous transformation
defined in u clused convex set in a Banach space, and suppose that T is conlinuous
and maps this set inlo itself. Then the transformation has a fired poind.

The proof of the existence of a solution of (8.1) as given here and in [9], is
based on (a) the theory of linear elliptic differential equations—for, in order to

U]n this case the solution of the boundary value problem is unique. Whether it is also
unique for the whole general case (8.1) is not known to me.
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define the trensformation Z[z] the linear equation (8.2) must be solved for Z—
and (b) a priori estimates for the solutions 2’ of (8.1) and Z of (8.2). The dis-
tinguishing feature of our discussion, as contrasted to that of Leray and Schauder,
is the nature of these a priori estimates. They enable us to choose a set of
functions z which will be mapped into itself under the transfoimation Z[z]--
and hence ‘o use Schauder’s fixed point theorem.

Our procedure for obtaining a priori bounds is based entirely on statements
concerning linear elliptic equations. We remark first that if 2’ is a solution of
(8.1) then (8.1) may be considered as a linear elliptic equation for 2’, with
known fun-~tions of zr and y as coefficients (once the values of 2’ and its deriva-
tives have been inserted into these coefficients). From this fact it is not difficult,
a2 we show in Nc. 3, to derive bounds for 2’ and its tierivatives of first order.
In crder to obtain estimates for the second derivatives of 2’ one must kiow more
about the coefficients of the linear elliptic equation it satisties; ior instance, if
these coefficients satisfy a Hélder condition then estimates for the second de-
rivatives may be ob,tained. But these coefficients involve the first derivatives
of the function 2’, and thus in order to calculate their Hélder continuity one
must first estimate the Holder continuity of these first derivatives. Just such
estimates are obtained if we apply Theorem V to the equation (still regarded as
linear) for z’; knowing these estimates we may then calculate estimates for the
second derivatives of 2’

Leray and Schauder used estimates for the second derivatives of a solution
2’ derived earlier by Schauder in Section 4 of [18]. His procedure for obtaining
these estimates was rather involved and made uae of the ‘‘auxiliary function”
introduced by S. Bernstein [2] (Schander referred to pages 119-125 in (2]).

More explicitly, the procedure we shall employ for deriving a priori esti-
mates for solutions Z of (8.2) and for solutions z’ of (8.1) is the following: We
consider a solution Z[z] of (8.2) corresponding to some function z and seek a
priori estimates foi ihe function Z. The estimuies that ean he obtained depend,
of course, cn the assumptions on the function z. Assuming at first as little as
possible we derive a priori bounds for Z and ite derivatives of first order. Then
we suppuee that these esiimates hoid for z and derive, using Theorem V, an a
priori Bolder inequalily for the first derivatives of Z. Assuming, ir turn, that
these new estimats:s hold for z we derive still stronger estimates for Z—and
80 on, continuing this iteration process. Note that at each stage of this process
only statements for solutions Z of linear equations are employed. If 2’ is a solu-
tion of (8.1) and we take Z = z = 2’ this process yields the desired a priori
estiunates for the soiution 2’

We remark that the class of functions z to which the Schauder fixed point
theorem will be appiied will consist of those functions satisfying the a priori
estimates obtained in the first two steps of the iteration process described above;
these steps are carried out in Nos. 3, 4.

C. B. Morrey attempted (with the aid of Theorem IV, (see [13] Theorem
I, p. 164)) to show the existence of a fixed point of the transformation Z[z] by
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an iteration procedure, Starting with a function 2,(z,y) he defined, recursively,
the functions

2, = Z(2a-1] n=23 :--.

He showed that one can select a subsequence of the z, which will converge to a
function z(z,y) having continuous first and second derivatives. He then stated
that the function z(z,y) is a solution of the differentinl equation; but this need
not be the case.

The existence theorem to be proved—for the boundary vaiuc probiecm for
(8.1)—is formulated as Theorem VI. The first two steps of our iteration process
for deriving a priori estimates for solntions Z and 2’ of (8 2} and (8.1) are carriad
out in Nos. 3, 1. Bounds for these solutions and their derivatives of first order
are vbtained, and a Hélder inequality for these derivetives is derived with the
aid of Theorem V. These results are then employed in No. 5 in introducing the
appropriate class of fuiictions z for which tiie mapping Z[z] is defined and which
is mapped into itself by Z[z). The complete a priori estimates for solutions of
(8.1) arc also derived in No. 5. Finally the proof of Theorem VI is given in
No. 6.

In No. 7 the existence of a solution of the boundary value problem is proved
under wesker assumptions concerning the given boundary values.

This entire section is completely independent of the rest of the paper,
except for & riference to Theorem V. The boundary value problem for (8.1)
may be solved however without the use of Theorem V, which is a sharp form of
Theorem 1V, but using Theorem JV itself. This is indicated in No. 8. The
solution 8o obtained has coatinuous derivatives of second order in @, but these
derivatives need not be continuous in Q.

2. Precise Formulation of Problem. Before stating the existence theorem
in preci.e form we introduce several Banach spaces which play a fundamental
role in our discussion.

We shall always consider functions defined in the closure of a fixed convex
domain @ which is bounded by a curve T of finite length represented by

r = 1(3)) y= y(s)v

and shall assume that the functions z(s), y(s) of arc length & have continuous
derivatives up to the third order, and that I' has positive curvature everywhere.

Denote by C. the class of real functions z(z,y) having continuous partial
derivatives up to order m_where m is a non-negative integer (these are to be
contincous in the ciosure @ of @) and by C... the sub-class of functions in C,,
whose derivatives satisfy a Hélder condition in @ with exponent a, 0 < a < 1.
Denoting the smallest Holder coefficient by H.(D"z) we may norm these func-
ions as follows

||2||-=mgxlll+m%X|Dzl+---+nix|D‘z|,

[z llasa = |l 2 [la + Ho(D"2),
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where D'z represents the i-th order derivative z, ¢ = 1, --- , m. With the re-
spective norms || ||. and || ||a.. the classes C. and C... form real Banach
spaces. The space C, is defined for any positive number a. Clearly C, contains
C,ifa < b.

We notc that a sphere in C,,, ,0 <y < 1l iscompactinC,., ,0< 6 < I;
that is, the set of z such that || z |[,., < H (some positive constant) is compact
in C,.y (with respect to thc nonn || |l,.,}. Morc generally. a sphere in C, is
compact in C, if a < b.

We introduce Banach spaces of functions ¢(s) defined on the boundary
curve I' as functions of arc length. Denote by C. the class of functions ¢(s)
which are m times continuously differentiable, and by C... the suhclass of
those in C. whose m-th derivatives satisfy Hélder conditions with exponent a,
0 < a < 1. We define the norms of these functions as

Il¢i|.'.=mgxl¢|+mgx|¢'|+ ---+mgx|¢"" l,

iléllace = |l@ |12 + Hie'™),
where H ! (¢'™’) is the smallest Holder constant for the m-th derivative ¢ of ¢.
We now make the assumption that the coefficients A, B, C in the differential
equation

8.1 A(z,y2,p,92.. + B(z,y.2,p,92.,, + Cz,y2,p,92,, = 0

are defined for all z, y in the domain @ and for all values z, p, ¢. We assume
further that for every positive number K, and for all z, y, 2, p, ¢ satisfying the
conditions

(8.3) (zyyine, |z||lpllgl<K,
tue coefficients A, B, C satisfy

(a) a Holder condition in the z, y, 2, p, g, with coefficients H(K) and exponent
B(K) depending ua the value of K, and
(b) the inequality

(8.4) MK)E + n') 2 A8 + Bgn + Cn” 2> m(K)(E + ")

for ail real ¢, »n where M(K) and m(K) are positive constants depending on K.

Condition (b) implies that equation (8.1) is elliptic for any values of the
arguments wnserted into the coefficients.

Let ¢(s) be a given function defined on T and assume that ¢(s) ¢ C;.. for
some a, 0 < u < 1.

Our existence theorem is contained in

Theorem VI: There exists a solution z(z,y) ¢ C, of (8.)) in @ which is
equal to ¢ on the boundary I'. Furthermcre, there exist positive constants
H and ¥ < 1 such that every solution z ¢ C, of equation {8.1), which takes on
the boundary values ¢, satisfies the conditions

(8.5) 2¢Casyy, |2 |2y < H.
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Thus there exists a solution z in C,,, of the boundary value problem.
(8.5) gives an a priori buund for all solutions (in C;) of (8.1) taking on the given
boundary values.

In No. 7 it is shown that the conditions of the theorem may be weakened.
In order that a solution of (8.1) exists it is sufficient that ¢(s) be once differen-
tiable and that the derivative satisfy a Lipschitz condition. The solution will
then have continuous second derivatives in @—not necessarily up to the boundary.

Our definition of the transformation Z(z], described in No. 1, will require
an existence theoicm for the boundary value problem for a linear elliptic equa-
tion. Schauder [19) has derived general existence theorems for linear elliptic
squations; we shall make use of one of his theorems {see [19)], pages 277-278).
He also derived ia [i5] a priurl estimates for solutions of such equations. We
state the cxistence theorem in a fcim suitable for application to our problem,
and include in the statement the a priori estimate for solutions.

Consider a linear elliptic equation

(8.9) a(z,)Z,. + b(z,0)Z., + c(z,¥)2,, = 0

in the domain @, where the coefficients a, b, c are in C,, 0 < u < 1, and suppose
af® + otn + ¢n® > m(z* + n°) for all real ¢,n where m is some positive constant.
ileté(s) e C;., ,0 < vy < u < 1, be a given function defined on the boundary
of a.

There erisis a unique 2olution Z in C,., of (8.6) taking on the boundary
voluce ¢. Furtheormore, there exists a posilive constant k, depending only on i| a ||, ,
1o 1la, 1l €l , m and the domain Q, such that the solution taking on the boundary
values salisfies the inequalily

(8.7) HZ |iaey Skl |l2ey -

3. Bounds on First Derivatives. Schauder’s existence theorem for linear
equations will be used to define the transformation Z{z]. But, in order to find
the appropriate set of functions z which is to be mapped into itself by the trans-
forimstion Z{z), wc proceed io derive estimutes for solutions Z of equations of
the form (8.2), as outlined in No. 1. We prove first the general

Lemma 5: let Z(z,y) be a solution of a linear elliptic eauation with
continuous coefficients

a(z,y)Z., + bz, 2., + c(z,y)Z,, = 0, dac — b > 0,

in G. Assume that Z is continuous in @ and has continuous second derivatives
in @, and denote the boundary values (on T') of Z by ¢(s). Then

HZlh <kllell
where k is some positive constant depending only on Q.

Proof: Denote the function Z(z,y)/ || ¢ ||z by Z’(z,y); we must prove that
[| 2’ ||y £ k, where k is some positive constant. Observe that Z’(z,y) too is a
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solution of the differential equation

a(z,yZ:. + bz, )Z:, + c(z,)Z,, = 0
and that
Iy lis =1

where ¥(s) denotes the boundary values of Z’.

Since the equation for Z’ is elliptic, and since only second order derivatives
of Z' appear, we may apply the well-known maximum principle'’ for such
equations and conclude that

max | Z | = max | ¢(9 | < 1.
r

Furthermore, it foiluws from the eiiipticity of the equation, that the surface in
three dimensional space represented by 2z = Z'(z,y) is a saddle surface, i.e. has
non-positive Gauss curvature—for, 1uitiplying the equation by Z., we see that

eZl; + bZ.,Z;, + cZi, = (2., - Z..2,,).

Because the differential equation is elliptic, the quadratic on the left side has
the same sign as ¢ so that (Z/,Z!, — Z!})—and hence the Gauss curvature of the
surface—is non-positive.

We may now apply a theorem on saddle surfaces, due to T. Radé [16], to
obtain the required estimates on the first derivatives of Z’. Radé’s theorem con-
cerns a saddle :mrface represented by an equation z = Z'(z,y) where Z'(z,y) is
defined in the closure of a convex domain; it was invented for the purpose of ob-
taining estimates for suzh surfaces. The theorem states that any plane tangent
to an interior point of the surface intersects the boundary curve z = z(s),
y = y(8), z = Z'(z(8), y(8)) in at least three points; here z = z(s), y = y(s)
represents the boundary of the domain. (A particularly simple and elegant proof
of the theorem was given by J. von Neumann in [21}.)

Thus the problcin of estimating the first derivatives of the function Z’(z,y)
in @—i.e. of estimating the slope of any plane tangent to the surface z == Z’(z,y)—
is reduced to that of finding an estimate of the slope of any plane passing through
three poiuts of the boundary curve

r=1z(s), y=yl®), 2= y).

One may easily obtain such an estimate for the slope in terms of the maximum
of [¥(s8) | + | ¢"’(8) | on T, 1.e. in terms of || ¥ ||;. The estimate depends on the
positiveness of the curvature of I'. The calculations are not at all difficult and
instead of presenting them here we refer to Schauder (18] (pages 626-628);
there the argument is clearly presented.

Since || ¢ [|; = 1, it follows that the slopes of all such planes are uniformly
bounded (the bounds depend on the shape of the domain @) so that the first

UThis asserts that z assumes its maximum and minimum on the boundary of @, For a
simple discussion of the maximum principle for elliptic equations see [6).
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derivatives of Z’(z,y) are bounded. This fact together with the result obteined
from the maximum principle implies
02"l <k,
where k is a positive constant. Thus Lemma 5 is proved.
If ¢ is the given function on the boundary of @ we shall denote the constant
k1l |3 by
kil¢ll: = K.
Lemma 5 now implies an a priori estimate for solutions 2’ ¢ C; of the boundary
value problem for (8.1),
(8.8 e il < K.

The constants £ and K depend. of conrse, o the domain @, but since the
domain is fixed throughout, their dependence on @, and that of oiher constants,
will not be indicated.

4. A Priori Holder Inequalily for First Derivatives. In accordance with
the outline of No. 1 we use (8.8) to derive new a priori estimates for solutions of
(8.1). Denoting the values of the constants M(K) and m(K) of (8.4), with
K = k|| ¢|li, by M and m, we shall prove

Lemma 6: Let z be a function in C, satisfying (8.8)

Hz |l < K.

Assume that a function Z ¢ C, , taking on the given boundary values ¢, is a
solution of the equation (8.2):
A(z’ y’ z’ zl ’ z.)zll + B(z’ y’ z’ z' H z'\’Zli
(8.9)
+ C(z,9,22,2)2,, =9,
with the function z and its derivatives inserted in the coeflicients A, B, C.

Conclusion: || Z ||, < K, and there exist positive constants K and & < 1,
which depend only on K, m, M and || ¢ ||; , such that

(8.10) i1Z [ha < K.

Note that the constants K, § are independent of the function z.

The lemma yields a new a priori estimate for solutions 2’ ¢ C, of (8.1) taking
on the given boundary values — || 2’ ||,.s < K—if we set z(z,y) and Z(z,y) equal
to 2. Thus we have the following a priori estimates for any solution 2’ ¢ C, of
8.1):

(8.11) Nzl <K=kllolli, [lz'[La<K.
Proof of Lemma 6: Since || z ||, £ K, the linear equation for Z(z,y) has

coefficients A, B, C satisfying (by condition (b) of No. 2) the inequalities
M@E + 1) 2 AF + Btn + Cn' 2 m{&’ + n),
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and is, therefore, elliptic. By Lemma 5 applied to this equation we infer that
” Z ”l S K)

so that, in particular, the first derivatives of Z are bounded by K.

Theorem V may now be applied to the function Z(z,y) as a solution of
(8.9). The conditions of the theorem are all satisfied—the constants K, K, ,
K, , X have the values M, K, || ¢ ||}, m. We conclude that the first derivatives
of Z(z,y) satisfy a Holder condition in @ with coefficient C and exponent § < 1
depending only on M, K, m, || ¢ |l; . This fact, togcther with the inequality
Il Z ||, < K imply the conclusion of Lemma 6, with K = K + C.

5. The Transformation Z[z] and the Proc! of (8.5). Ir order to define the
transfor mation Z[z] for 3 class of functions z 1t must be possible to solve the
livear equation (8.2)

a(z,)Z.. + bz, ¥Z,, + c(z,9)Z,, = 0

~—for a function Z taking on the given boundary values ¢—formed by setting
a(z,y) = A(z,y,2,2 ,2,), b(z,y) = B(z,y,22. ,2,), ¢(z,y) = C(z,4,2,2, ,2,). According
to Schaudar’'s existence theorem for linear elliptic equations, which is stated in
No. 2, the equation for Z may be solved, provided that the coefficients a, b, ¢
satisfy Holder conditions in @. From the way these coeflicients are defined it
i8 clear that this is the case if the first derivatives of the function z satisfy Hélder
conditions in Q.

With the aid of this remark we are now in a position to chooee the appropri-
ate set of functions z which will be mapped into itself under the transformation
Z[z]. Lemma 5 impiies that the function Z, corresponding to any function z in
C, , satisfies the condition

Nzl <K

where K = k|| ¢ |!;. This suggests choosing the set of functions z to satisfy the
same condition || z ||, £ K. Furtkermore, in order to be able to define the trans-
formation Z[z] for this set of functions z we see from the remark above, that
their first derivatives should satisfy Holder conditions. But what Holder
conditions? Well, Lemma 6 informs us that if 2 satisfies the condition || z ||,
< K the correspunding function Z satisfies the condition (8.10), | Z ||,.s < K
suggesting a8 an additional condition on our set of functions 2, the condition
Helhea < K.

Let us denote by S, ,, the set of functions z satisfying the conditions
(8.12) Nzl <K, Nzl <K,
It is clear by the definition of S,.s and by Lemmas 5 and 6 that if the trans-
formation Z[z] can be defined for functions z in S,,, then it maps the sct S,,,
into itself. We have then to define Z[z] for zin S,,, .

Denoting the values of the constants H(K) and B(K) of coudition (a) of
No. 2 (with K = k || ¢ ||5) by H and 8, we shall define the transformation Z{z2]
with the aid of the following
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Lemma 7. Letzbein 8,.,, and set A(z,y,2,2, ,2,) = a(z)y), B(z,y,2,2, ,2,) =
b(z,y), C(z,y,2,2. ,2,) = ¢(z,y). There exists a unique solution Z(z,y) ¢ C, of the
linear elliptic equation

(8.13) a(z, Y)Z.. + bz, y)Z., + c(z, Y)Z,, = 0,

which takes on the given boundary values ¢ ¢ C;,. . Furthermore, there exist
positive constants H and v depending only on K, M, m, K, 8, H, 8 and || ¢ ||3+«
(and hence, because of the dependence of K and 5, (see No. 4) only on K, M, m,
H, Band || ¢ jl3+a), such that

(8.14) ZeCy, and || 2|, <H.

Proof. Since iz ||, < K, zaad its first derivatives p, g satisf;r the incquality
|z|,|pl,|2} £ K. From condition (a) we see that the functions 4 (z,y,2,0,9),
B(z,y,2.2,9), C(z,y,2,p,9) satisfy Hélder conditions in all five arguments with ex-
ponent 8 and coefficients H. Since, by assumption, the derivatives p, g of z satisfy
a Holder inequality with exponent & and coefficient K, for || z |l,.s < K, it
follows that the functions a(z,y), b(z,y), c(z,y) satisfy a Holder condition in @
with exponent 88 and coefficient depending on K, K, and H.

Note further that from (8.4) and the inequality || z ||, < K, the inequalities

ME+n)2a +btn+en”>m@E + 5  forreal ¢)n
follow, with M = M(K),m = m(K) for K =k || ¢ ||; .

Equation (8.13) is a linear elliptic equation of the type considered in
Schauder’s existence theorem. The given function ¢ ¢ Cj;,. is contained in
Cj., for any positive ¥ < a. The constants u and v of the theorem may there-
fore be taken to be, respectively, 88 and any positive number less than 85 and
not greater than a. We conclude from the existence theorem that there exists
a unique solution Z of (8.13), taking on the given boundary values ¢. Further-
more

ZeC,,, and Ii Z “2&1 <k ||¢ “;01

where X, is a constant depending on || @ ||s , || b [lss , || € |las and m. Setting
k.|| ili., = H, we see that the proof of Lemma 7 is complete.

It enables us now to define the transformation Z[z] for functions in S,., ,
and in view of Lemma 6 the transformation maps S, ., into itself. Furthermore,
according to Lemma 7, the image functions Z satisfy the inequality

12 |l,, < H.

The last conclusion of Lemma 7 also permits the derivation of new a priori
estimates for solutions z’ ¢ C, of (8.1) taking on the boundary values. It was
established that such solutions satisy (8.11)

Iz’ | K, |2 |l < K.
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If, in Lemma 7, the function z is set equal to 2’ then, because the solution Z of
(8.13) is unique, Z is also the function 2’, and hence by Lemma 7 it follows that

2¢Cyy and  |[2' ||sey < H.

We have, therefore, derived the a priori estimate (8.5) of Theorem VI.

In the estimate just obtained for 2z’ the Hilder exponent v is less than 8é.
Using the estimate in the manner described in No. 1 we may derive an a priori
estimate for || 2’ ||,.,- with 4’ any positive number less than 8 and <a. Consider
equation (8.1) sctisfied by 2/, and set A(z, y, 2, 2L, 2]) = a(z, y), B(z, y, 2, 2. , z!)
= b(z, y),C\z, y, 2, 2, 2]) = ¢(z, y), 80 that the equation takes the form

az;, + bz, + &l = 0.

Since the second derivativos of 2° are bounded by H, so that che first derivatives
satisfy Lipschilz conditions with the coefficient H, it follows that the functions
a, b, ¢ satisfy Holder conditions with exponent 8. Applying the Schauder
theorem of No. 2 to the equation we conclude that the second derivatives of 2’
satisfy Holder conditions with any exponent less than 8 and not greater than a.
Thus if 8 > a we may conclude that the second derivatives of 2’ satis{y a Hblder
condition with exponent a.

In particular if the coefficients A, B, C satisfy Lipschitz corditions in all
the arguments z, y, 2, p, ¢, i.e., if we assume 8(K) = 1, we infer that the solution
Z'(z,y) is in C,,, and satisfies the a priori estimate

12" e < H’,

where H' is a constant depending only on K, 24, m, Hand || £ |!5.. .

6. Proof of Theorem VI. The transformation Z[z] has been defined for
functions z in the set S,.,, i.e. functions z satisfying the inequalities

lzlh K, |zl <K,

and maps this set into itself. Furthermore, the transformation mape the func-
tions z into functions Z which lie in C,,, and satisfy (8.14)

1| Z ||sey < H.

Since the set S,.; i3 convex we assert that the conditions of Schauder’s fixed
point theorem of No. 1 are satisfied by the transformation in the Banach space
Ciss . For, (1) Z[z) maps the convex set S,,,; into itself, (£) the mapping is
completely continuous (that it is continuous is just as easily shown)—this follows
from the fact that the image points lie in a sphere || Z ||;», < H in C,,, , and are
therefore compact in C,.; .

Therefore the transformation Z{z] has a fixed point 2z’(z,y). Since the
image points of the transformation lie in C,,, and satisfy

| Z sy < H

it follows that the same is true of the fixed point 2’(z,y). Therefore 2’(z,y) solves
the differential equation (8.1) and the proof of Theorem VI is complete.
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7. Weakening of Assumptions on Boundury Values. It has already been
pointed out (see p. 139) that we may show the existence of a solution of (8.1)
taking on given boundary values ¢(s), and having continuous second derivatives
in @ but not necessarily in @, if we assume merely that the function ¢(s) is once
differentiable and that the first derivative ¢'(s) satisfies a Lipschitz condition.
(That is, we assume that there exists a constant L such that | ¢'(s,) — ¢'(s;) | <
L)s — s, forall s, , 8 .) For this purpose we need the foilowing theorem,
due to Schuuder ({19), Theorem 1, p. 265) giving a priori estimates of solutions
of a linear elliptic equation in closed subdcmains of the domain. Again we
state this in a form best suited for application here.

Let Z(z,y). a bounded function having continuous first and second deriva-
tives in & bounded dom.zin &, satisfy a hincar elliptic eguation in @

az, .. + bz,yZ., + (z,112,, = 9,

where the coefficients a, b, carein C, , 0 < g < 1. Suppoee that at® + bty +
en’ > m(g + 7°) for all resl ¢, n, where m is some positive constant. For every
positive number y < p and every closed subdomain ® of @

Z(z,y) e C,,, in @,

and

Z |3, £ x max | Z |.

Here || |l7., denotes the norm of the function considered as being defined only
in the closed domain ®; k, is a ~onstant depending only on v, g, || a |l,, || 0|, »
[l ¢1l., m and the dirtance d from ® to the boundary of Q.

That Z is in C,., follows from Theorem I, of [5) (page 208).

Suppose now that we wish to find a solution of (8.1) assuming the given
boundary values ¢(¢}. Set max {||¢ ||i. L} = «x, where L is the Lipschitz con-
stant of ¢’. Approximate ¢(8), in the sense of the norm || ||{ , by a sequence of
functions ¢,(s8) having continuous dJderivatives up to the third order and such
that !l 4. 13 < 2¢,n =1,2,3, --- . We know that for each of these functions
we may rcive equation (8.1) for a function z,(z,y) which equals ¢.(s) on the
boundary—this follows from Theorem VI. By the a priori bounds (8.i1)
established for solutions of (8.1) we know that || z. ||, < k || ¢ ||5 = 2k« and
that || 2. |1+s- < K’ where K’ and &’ are constants, 0 < &' < 1, which depend
on x and are independent of n. It follows, as in the proof of Lemma 7, that the
functions A(z, y, 2., P., @), B(2, ¥, 2., P. , 0.), C(z, ¥, 2., P, ¢.) 88 functions of
z and y satisfy a uniform Hélder condition (independent of n) in @. We may
therefore apply the just stated theorem by Schauder to the equation satisfied by
z, , and conclude that there exists a positive constant y < 1, such that for any
closed subdomain ® of @ the inequality

||z.||§'..,$k,max|z.|, n=l’2v"'
a
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holds, where k, is a constant independent of n. Since || z. ||, £ 2k« we have
” Za II?&«, < 2k|kK.

This last inequality implies that the functions 2z, and their first and second
derivatives are uniformly bounded and equicontinuous (since the second deriva-
tives satisfy a uniform Hélder condition) in every closed subdomain of @. It
follows, in the usual way, that we may select a subsequence of the z, which will
converge (together with first and second derivatives) to a function z(z,y) (and
its first and second derivatives) in @. In every closed subdomain of @ the
convergence will be uniform and the second derivatives of z(=,y) aatisfy a Holder
condition.

Clearly z(z,y) is a sclution of the differential equation (8.1). Since it
satisfies the inequality

IIZ ”l < 2k‘)

it is continuous ir: the closure of @ and because || ¢ — ¢. ||] — O, assumes the
value ¢(s) on the bonudary.

8. Solution of Boundary Value Problem Using Theorem IV. Our proof of
Theorem VI made use of Theorem V only in the proof of Lemma 6 showing that
the first derivatives of the soluticn Z of (8.9) satisfy a Hélder condition in Q.
It is of interest that one may demonstrate the existence of a solution of (8.1),
which takes on the boundary values ¢, using—instead of Theorem V—Theorem
IV. The solution so obtained is continuous in @ and has continuous second
derivstives in @, but not necessarily in Q.

In order to carry out this existence proof one constructs again an appropriate
class of functions z for which the transformation Z(z] may be defined, and which
is mapped into itself under this transformation—thus enabling the use of the
Schauder fixed point theorem. Our class of functions z in the proof already
given (defined in No. 5 as S,.;) was determined by means of Lemmas 5 and 6
which made use of Theorem V. Suppose now, in the discussion of Lemma 6,
we use Theorem IV instead of V, whut is the corresponding class of functicns 2
80 obtained? It ie the nature of this class of functions, and of the corresponding
Banach space, that is the interesting feature here.

To determine this class consider again the differential equation (8.9) for
Z (of Lemma 6) with z satisfying condition (8.8). Going through the proof of
Lemma 6, but applying Theorem IV instead of Theorem V, we conclude that
the first derivatives of Z satisfy a Hélder inequality in any closed subdomain of
@ (not necessarily in all of Q).

Thus if we denote by Q. the domain consisting of those points of @ whose
distance frum the boundary of @ is greater than 1/n, n = 1, 2, --- |, we may
conclude, in particular, thai there exist positive constants 8, < 1 and K, , de-
pending only on m, K, M, n and || ¢ ||5 , such that the inequalities

(8.15) 112 11&. < K. n=12- -,
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hold. Here the left side represents the norm.of Z considered as a function de-
fined in the domain @, .

Inequalities (8.15) replace the inequality (8.10) which was obtained with
the aid of Theorem V. Lemma 5 and inequalities (8.15) now suggest (as in No.
5) that the appropriate set of functions for which the transformation Z[2] is to
be defined is the set of functions, which we denote by S, satisfying the conditions

IIZIIISK “2”10.‘.<Kn, n=] 2 T

By Leinma 5 and the inequalities (8. lo) it 18 clear that the transformation Z[z],
if it can be defined on S, maps S into itself.

In order !9 complcie the existence proof, using Schauder’s fixed point
thecrem we must show the following:

(a) The transformation Z[z] may be defined for functions z in S. That is, for
any fun:tion z of S there exists a unique solution Z of the equation

(8.16) A(z,y22. 2)Z.. + B(z,y2.2: 2)2., + C(z,y.22. 2)Z,, = 0,

having continuous second derivatives in @, and taking on the given boundary
values ¢. _

(b) The set S is a convex set lying in a Branach space C. _

(¢c) The transformation Z[z] is completely continuous in C. (It must also be
shown that Z[z] is continuous in C; this is easily done, and we omit it here.)

Assuming (a), we show first (b) and (c).

Proof of (b): The definiticn of the appropriate Banach space C is suggested
by inequalities (8.15). Consider any function z(z,y) having continuous first
derivatives in @ which satisfy Hoélder inequalities in @, with exponent 8, for all

n =12 +--. Define anewnorm for z(z,y) by
—
Iz ]l = lu.b. & II‘~'||m.-

The Banach space C is now defined as the set of furctions z having finite norm
P

Hz1l-
The set S may then be characterized as the set of functions z satisfying the

inequalities
P
Hzlh <K, [zl <1,

and is clearly a convex set in C.

Proof of (c): In order to demonstrate the complete continuity of the
transformation Z[z] in € we establish estimates for the solution Z of (8.16) with
zin S. This is done with the aid of Schauder’s theorem on a priori estimates of
solutions of elliptic equations quoted in No. 7.

Let Z(z,y) be the solution of (8.16) taking on the given boundary values
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¢, with z in S—we are assuming that (a) is verified. Consider the equation in
the domain .., (for any n). In that domain the first derivatives of z are
bounded by K and satisfy a Holder condition with exponent 8,., and coefficient
K... (since zisin S). It follows, as in the proof of Lemma 7, that the coefficients
a(z,y) = A(z,y,2,2, ,2,), - - - of the equaticn (8.16), regarded as known functions
of z and y, satisfy in @,.. a Holder condition with exponent and coefficient
depending only on B, é..., K, K.., and H; furthermore, they satisfy the follow-
ing inequality
ME +9)2a +btntcen®2m@E +1n) foralireal§,n.

(The definitions of ttie constants M and m are given in No. 4 while tke definitions
of 8 and H precede the staicment of Lemma 7 in No. 5.) We may therifor:
apply Schauder’s thecrem of No. 7 to the equation (8.16) in the domain Q,,,
and conclude that in the closure of @, , which is a closed subdomain of Q.., , the
solution Z has continucus second derivatives satisfying Hélder conditions with
exponent v, and that

HZie,. Lkemax | Z | < k.max | ¢ |

where v, and k, depend only on the constants 8, 8., , K, K., ,H, M, m and n.
The complete continuity of the transformation Z[z] now follows from the
fact that the set of functions Z satisfying the inequalities

”ZII::.,.SIC.ID&XIéI 7l=l,2,°°'
is compact in C.

Thus, in order to solve the boundary value problem, by proving the exist-
ence of a fixed point of the transformation Z[z], we have only to verify (a). Note

that the solution 2(z,v), so obtained a3 a fixed point, satisfies the inequalities
(8.17) llz {l32y. < k.max | ¢ [.

Proof of (a): Consider equation (8.16) with z some function in S. It has
the form

(R.18) a(z,yic.. + Yz, 7., + c(z,9)2,, = 0,

and is to be solved ‘or the function Z taking on the given boundary values ¢.
As remarked above in the proof of (b) the coefficients a, b, ¢ satisfy in each domain
@. a Holder condition'>—witk exponent and coefficient which we now denote
by a. and K, . The existence of a solution Z will be proved by approximating
the coefficients a, b, ¢ by functions @, , b.,¢c. ,n = 1,2, ---, which agree with
a, b, ¢cin Q. , and which satisfy Holder conditions in the whole domain @. The
analogous linear differential equations with coefficients a, , b. , ¢, will admit
solutions taking on the given boundary values; a subsequence of these solutions
will converge to the solution of (8.16).

UThe existence proof given here applies to all equations of the form (8.18) (ana to a
wider class) with coefficients satisfying Holder conditions in every closed subdomain of the full
domain.

e ———— et S i it
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The approximation of the coefficients a, b, ¢ by functions a, , b, , ¢, having
the required properties is particularly simple in our case: For n sufficiently
large, say n > some number N, the boundry of @, is a convex curve having
positive curvature. To every point (z,y) in @ outside of Q. there is & unique
nearest point (z',y’) in Q.. We define the approximating functions a, , b. , c.
forn > N by

a{z,y), b(z,y), c(z,y) ior (z,y) in Q. ,
a. , ba y Ca =

a(z’,y"), b(z"y'), c(z’,y")  for (z,y) not in Q. ,
na=XNS1, ... Thefunciionsa,,bd.,c. satisfy in @ a H6lder condition (which
varies with n,. Therefore, by Schauder’s existence theorem for linear elliptic
equations we may solve the equation

aﬂzul + bﬂzu' + CQZ“,. = 0

for a function Z,(z,y) which takes on the given boundary values¢ (n = 1,2, - - ).

Consider now the functions Z,,, , Z,.,, -+* in the domain @,,, for some
fixed 7. In @,., the coefficients @, , b, , ¢, forall > j + 1, are equal to a, b, ¢
and hence satisfy a Hélder condition with exponent a,,, and coefficients K, ., .
Using now Schauder’s theorem on a priori estimates in closed subdomains, we
conclude that there exist positive constants k, , and v; < 1, such that

“Z‘“:o'n <.k;maXIZ‘ISkim|§X|¢I;

for, the closure of @, is a closed subdomain of @,., . Thus the functions Z,,, ,
Z,.s, -+ and their first and second derivatives are uniformly bounded and
equicontinuous in @, , and we may therefore select a subsequence which con-
verges (together with first and second derivatives) to a function Z(z,y) (and
its derivatives) in @, . By letting j progress through N + 1, N + 2, - - - we may,
by the usual diagonalization process, find a suhsequence of the Z, which wil)
converge (together with first and second derivatives) to a function Z(z,y) (and
it corresponding derivatives) in all of @. Clearly Z{z,y) is tLe required solution.
That Z(z,y) assumes the given boundary values and is continuous in the clcsure
of @ follows from the fact that Z(z,y) satisfies the inequality—as do the functions
Z.(z,y)—
NZ I <kllsll

which is a consequence of Lemma 5. Thus (a) is verified, and the solution of the
boundary value problem for equation (8.1) is complete.

It follows from (8.17) that ths second derivatives of the solulion z{z,y) of
(8.1) 80 obtained satisfy Holder conditions in every closed subdomain of Q.

9. Estimates for Higher Derivatives of Solutions
of Nonlinear Elliptic Equations

1. It is easily seen thut with the aid of the theory of linear elliptic equa-~
tions developed in [19] one may obtain estimates for derivatives of all orders of a
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solution of the nonlinear elliptic equation (1.1), once bounds for the solutions and
its derivatives up to third order are known. In this section we show how to
cbtain estimates for derivatives of order greater than two of a solution of (1.1),
knowing bounds for its first and second derivatives. The estimates we obtain
are of two kinds: estimates of derivatives in closed subdomains, and, under
additional assumptions concerning smoothness of the boundary and of the
boundary \alues, estimates for derivatives in the whole domain.

The estimates of the first kind foliow immediately from Theorem I and from
a priori estimates for solutions of linear 2!liptic equations, as given by Schauder
in [19]. Those of the second kind ere derived using a sharp form of Theorem I
(which is proved below) and, again, Schauder’s estimates in [19) for linear
elliptic cquationa.

Estimates of the second kind for the general nonlinear elliptic equation
were first given by S. Bernstein [2], and were re-established by Schauder using
Bernstein's method of ‘auxiliary functions™ ([18] section 6). Schauder’s esti-
mates are not quite as strong as those given here. He requires, for iustance,
more differentiability of the differential equations (see also footnote 15 on page
154). One main feature of our procedure for obtaining the estimates is that
given Theorem I (or its sharp form) we need only use statements concerning
lireur elliptic equations. Schauder’s use of the auxiliary functions (which is
somewhat difficult to follow) involves more essentially the nonlinear character
of the equation.

The estimates of the ficst kind for the general nonlinear elliptic equation,
which we present here arc new. H. Lewy [11] derived such estimates for non-
linear elliptic equations of the Monge-Ampére type which are analytic. In
addition, however, he succeeded in obtaining & priori estimates for derivatives
of second order of solutions of a class of such equations ([11}, II).

In connection with the problem of finding a priori estimates, depending on
the boundary values, of derivatives of solutions of general nonlinear elliptic
equations, mention should be made of the work of J. Leray (7], |8).

In [7) he obtained a priori bounds for derivatives of sccond order of solutions
of a class of nonlinear elliptic equations (the class includes quasilinear eqnations)
in terms of vounds ior derivatives of first order. In [8] he discussed, still further,
equations for which a priori bounds for derivatives of first order of solutions
may be derived, and described classes of equations for which such bounds do not
exist. In particular he furnished criteria for the existence or non-existence of a
priori bounds for derivatives (of first and second order) of solutions of equations
of Monge-Ampere type.

2. Estimates of the first kind. We shall consider a solution 2(z,y) of an
elliptic equation
(9-1) F(x,y,z,p,q,r,a,t) =0
in a bounded domain D, and assume that the conditions of Theorem I are
satisfied, i.e.
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(i) The first partial derivatives of F (with the values of z(.,y) and i‘s
derivatives inserted into the arguments) are bounded in absolute vaiue by a
constant K.

(ii)) z(z,y) has continuous first and second derivatives bounded by K, .

(iii) For any real (§,7) the inequality

F£ + Fgn+ Fo* 208 + 7))

holds for all (z,y) in D, with X a positive constant.
Furthermore, assume

(iv) F has continuous derivatives up to order m with respect to all vari-
ables and its derivatives of m-th order satisfly Hé&!der conditions with respect
to all variables. Let the constant K (of (i)) be a bound for the derivatives of F
up to order m and for the Hélder coefficient of the derivatives of m-th order—
when the values of z(z,y) and its derivatives are inserted into the arguments.
Let 8 denote the exponent of this Holder condition.

It followe from Theorem III that the solution z(z,y) possesses partial
derivatives up to order m + 2 in D and that its derivatives of order m + 2
satisfv a Holder condition in any closed subdomain of D.

The estimates of the first kind for the solution z(z,y) are contained in

Theorem VII: In any closed connected subdomain @ of D the derivatives
of z(z,y) up to order m + 2 are bounded in absolute value by a constant which,
together with the constants of the Hélder inequality in ® for the derivatives of
order m + 2, depends only on the constants K, K, , A, 8, the distance d from ®
to the boundary of D, and the diameter D of D',

Proof. To prove this theorem we differentiate equation (9.1) and apply
known theorems on linear equations. We restrict ourselves to the proof for the
case m = 1 where estimates for third derivatives must be found. Estimates for
derivatives of higher order are obtaincd by further differentiation of the equa-
tion and application of the same argument.

Differentiate equation (¥.1) with respeet to z and consider the resulting
equation as a linear equation in 2 = z, with known coefficients

(902) F'pll+plp:'+Flp..+F’3+F.p.+Flp+Fl=0°

We claim that the arguments z, y, z - - - , 2,, occurring in the coefficients, con-
sidered as functions of (z,y), satisfy in any connected closed subdomain ®’ of D
a Holder inequality with constants depending only on the constants of (i)-(iii),
the distance d’ from ®’ o the boundary of D, and D. For the arguments z,, ,
2., , 2,, the Holder inequality is a consequence of Theorem I. For the arguments
z. , 2z, it i8 a consequence of condition (ii). Finally, it is easily seen, using the
connectivity of ®’, that the argument z(z,y) satisfies a Hélder inequality in
@’ for which the constants depend only on K, (of (ii)), d’ and D.

HIf a bound for the function z is known the assumptions of the boundedness of the domain
D and the connectedness of B are unnecessary.
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It follows now, frcm the Hdlder continuity (in all arguments) of the first
derivatives of F, that the coefficients in equation (9.2), considered as known
functions of (z,y) satisfy a Holder condition in ®&' with constants depending only
on the constants of (i}-{(iv), on d’, and D.

Let ® be a given connected closed subdomain of ®. Introduce another
closed subdomain @' of D consisting of the connected component containing ®
of the set of all points whose distance from the boundary of D is not less than
d/2: clearly d' = d/2 and ® is a closed subdomain of ®’. To equation (9.2),
considered in @', we apply a theorem on a priori bounds for solutions of linear
elliptic equations due to Schauder (Theorem I, p. 265 in [19])—of which the
theorem stated on page 145 is a special case—and conclude that in ® the second
derivatives of p, i.e. 2,,. , 2,,, and z,,, are bounded by a constant which, tcgether
with the constants of the Hélder inequalities for these second derivatives in ®,
depends only on the constants of (i)-(iv), on d and on D.

Similarly, differentiating (9.1) with respect to y we obtain analogous esti-
mates for z,,, , thus proving Theorem V1I.

3. Estimales of the second kind. A sharp form of Theorem I. Estimates of
the second kind for solutions of (9.1) will be derived for solutions z(z,y) satisfying
conditions (i)-(iv) above and the additional conditions:

(v) (a) The domain D is of type L.., (see §2, 1), and the function z(z,») and

its derivatives up to order m + 2 are continuous in the closure D of D.
In addition the boundary values of z(z,y), regarded as functions of arc
length, have continuous derivatives up to order m + 2 which are
bounded by a constsnt K, .

(b) Furthermore, the derivative of order m + 2 of the boundary values
satisfies a Holder condition with coefficient K, and exponent 1.

These estimates for the solution z2(z,y) are contained in

Theorem VIII: _The derivativis of z(z,y) up to order m + 2 are bounded
in absolute value in D, and those of order m + 2 satisfy in D a Hélder condition,
the constants of which, together with the bound for s!l the derivatives, dcpend
only on the constants of (i)-(v), and on the domain .

In order to prove Theorem VIII we shall make use of a strong form of
Theorem I:

Theorem I1X: 1et z(z,y) be a solution of (9.1) and assume that conditions
(i)-(iv) and (va) are satisfied for m = 1. Then the derivatives of second order
satisfy in D a Holder condition with constants depending only on the constants
of (i)-(iii), (va), and on the domain D.

Proof: The proof being similar to that of Theorem V which was carried
out in detail, is presented merely in outline. It would, of course, be very con-
venient if we could apply Theorem V directly to equation (9.2), and derive a
Holder inequality in D for the first derivatives of p, i.e. for r and s. Indeed
p(z,y) and equation (9.2) satisfy all the conditions of Theorem V—except that,
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on the boundary we are given estimates for the third derivative of the boundary
values of 2, not for the sccond derivative of the boundary values of p.

The procedure to be followed is, as in §6, to establish estimates of the form
(6.4) for the functions r, s and ¢, that is, to find positive constants d, M, a < 1,
depending only on the constants of (i)-(iii), (va), and on the domain D, such
that the inequality

9.3) [[c+n+a+a+i+deagsH
Ce

holds, where C, represents the intersection of D with any circle having centre in
D and radius d, and p is the disiunce of point of integration from the centre.
The desired Hélder inequality for r, s and ¢ then follows from Lemma 1.

The estimates of the form (9.3) will be derived first for the functions r and
8, which satisfy an inequality

(9.9) ntrl e+ <k(rps. —ra8) + K,

where k and k, are non-negative constants depending only on the constants of
(1)—(iii). This inequality is a consequence of the Remark at the beginning of
§4 applied to (9.2). The corresponding estimate, of the form (9.3) for ¢ follows
from the inequality

(9.5) B+ <K+ +a8+8+0),

where K is a constant depending on the constants of (i)-(iii). Inequality (£.5)
is derived immediately from the quasilinear equation obtained by differentiating
equation (9.)) with respect to y.

Applying Lemma 3 to (9.4) it is seen that the functions r and s satisfy
estimates of the form (9.3) for sufficiently amall circles C, lying entirely inside
® (and bounded away from the boundary of ©). We shall have to derive euch
estimates for the C, which may approach, and even intersect, the boundary of ©.

To this end, as in §6, 3, we introduce lccal treasforinations of variables
(from (z,y) to (¢,m), of the type (6.5)), in the neighborhood of a boundary curve,
mapping the boundary curve, at least locally, into a straight segment (on y =
constant). The function z(z,y) as a function #/(§,9) of the new variables satisfies
a transformed differential equation, which we may refer to as (9.1)’. On differ-
entiating (9.1)’ with respect to ¢ (i.e. in a direction parallel to the straight
boundary segment) we find, as in §6, 3, that the second derivatives 2, = r’
2¢y = & satisfy an inequality similar to (9.4), which we may refer to as (9.4)’,
with constants k’ and k{ depending only on the constants of (i)-(iii) and the
domain D (here we use the fact that D is of type L,). In addition, since a bound
for the third derivative of the boundary values of z is known (from (va)) we
note that on the straight segment of the transformed boundary

|ri | < K3y
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where the constant K, depends only on the constants of (i)-(iii), (va), and
the domain ©. In virtue of (9.4)’ and this last inequality we may apply Lemma
3’ and conclude that estimates of the form (9.3) hold for the functions r’ and &'
in circles C; which may intersect the straight boundary segment. Differen-
tiating (9.1)' with respect to n we may derive the analogue (9.5)’ of (9.5), and
hence conclude that ¢’ also satisfies estimates of the form (9.3) for the circles C; .

Reintroducing the variables z and y we may duplicate the rest oi the argu-
ment given in §6, 3 and obtain the numbers d, M, « < 1 for which (9.3) holds,
and thus complete the proof of Theorem I1X.

Remark: It is possible, following ihe remark at the end of §7, to establish
the Héldcr conditions for r, 8 and ¢, in D, in termns of the constants of (i)-(iii), a
constant K, , and the domain ©; here K, is a bound on the integrals of the
squares of the third derivatives of the boundary values of z (with respect to arc
length) along the boundary curves.

4. Proof of Theorem VIII. As in the proof of Theorem VII we descnbe
here only the proof for the case m = 1, where we must find estimates for third
derivatives of z.'* Again we differentiate equation (9.1) and apply Theorem 1X
and theorems on linear equations. The estimates for derivatives of higher
order (m > 1) may then be obtained by further differentiation and repetition
of the same argument.

The desired estimates for closed subdomains are given by Theorem VII;
in order to derive the estimates for points near the boundary we introduce, as
in No. 3, local transformations (from (z,y) to (§,n), of the type (6.5)), in the
neighborhood of a boundary curve, mapping the boundary curve, at least
locally, into a straight segment I' (on n = constant). The transformed function
2'(¢,n) satisfies the transformed equation, which we again refer to as (9.1)', and
which, on differentiation with respect to ¢ yields an equation (9.2)’, analogous
to (9.2), which we may consider as a ‘linear’ equation with known coefficients
in the function z; = p’. This equaticn holds in 8 domain I'" having I' as part
of its boundary.

As in the proof of Theorem VII we may conclude, using Theorem IX instead
of Theorem I, that the coefficients of equation (9.2)" satisfy, as functions of ¢
and 7 in this domain I, a Holder condition with constants depending on the
constants of (i)-(iv) and on . In addition the solution p’ of the ‘linear’ equa-
tion (9.2)' satisfies on I' the inequality

in virtue of (va), and p}, satisfies on I' a Holder condition (in virtue of (vb)),

with constants which, together with K; , depend on the constants of (i)-(v)
and on D.

UAg Theorem VII asserts, the estimates 8o nbtained depend on estimates for the deriva-
tives of F of first order only. The corresponding estimates obtained by Bernstein and Schauder
(see No. 1) depend aiso on estimates for derivatives of F of second order.
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In his study of linear elliptic equations with Hélder continuous coefficients
Schauder showed how to obtain a priori estimates for the second derivatives
(and their Hélder continuity) of a solution of the equation in a subdomain @
(of the original domain I'" where the differential equation holds) which mey abut
a boundary segment I' of I, provided that (a) @ remains bounded away from
any other boundary points of I/, (b) on I' estimates for the derivatives of the
boundery values up to second order aud their Holder continuity is known.
(See [13], Chapter 3, in particular Theorem 2.) This is exactly our situation,
and using Schauder's results, we may obtain estimates for the second derivatives
of p’, i.e. for 2i;; , 2ty » Ztey , 8nd their Holder continuity in a subdomiain of I
lying near I'. From the equatioa cbtained by differentiating (9.1)" with iespect
to n, we see that we cun express z;,, in terms of these other third derivatives of
£’. Hence sunilar estimates hold for z;,, .

On re-introducing the original coordinates (z,y), and noting that this proce-
dure may be carried out in a neighborhood of every boundary point of D, we
obtain estimates for the third derivatives of z and their Hélder continuity in a
domain consisting of points lying in some neighborhood of the boundary of D.
(The fact that D is of type L, is used here. The details of this procedure are
related to those carried out in §6, 3 and are not presented.)

The remainder of D is a closed subdomain of ® for which such estimates
have been established in Theorem VII. Combining these estimates by a simple
argument we may derive the required estimates in the whole domain £, and thus
complete the proof of Theorem VIII.

BIBLIOGRAPHY

[1] Bernstein, 8., Sur la nalure analytique des solutions des équations aux dérivées partielles du
second ordre, Mathematische Annalen, Volume 59, 1904, pp. 20-76.

{2] Bernstein, 8., Sur la généralisation du probléme de Dirichlet, Mathematische Annalen,
Volume 69, 1910, pp. 82-136.

{3] Gevrey, M., Démonatretion du theordme de Picard-Bernstein par la methode des conlours
surressifs;, prolongement analytique, Bulletin des Sciences Mathématiques, Volume
50, 1926, pp. 113-128.

{4) Giraud, G., Equations de type éllipliqus, Annales Scientifiques de I'Fccle Normale Supéri-
eure, Paris, Volume 47, 1930, pp. 197-266. References to previous work by the
author may be found here.

{5] Hopi, E., Uber den funktionalen, insbesondere den analytischen Charakier der Léosungen
elliptischer Diflerentialgleichungen nweiter Ordnung, Mathematische Zeitschrift, Vol-
ume 34, No. 2, 1931, pp. 191-233.

{6] Hopf, E., Elementare Bermerkungen tber dic Losungen partieller Differentialgleichungen
Zweiter Ordnung vom ellsplischen Typus, Sitzungsberichte der Preussischen Akademie
der Wissenschafter, Volume 19, 1927, pp. 147-152.

(7) Leray, J., Majoration des dérivées secondes des snlulions d'un probléme de Dirichlet, Journal
de Mathématiques Pures et Appliquées, Volume 17, No. 9, 1938, pp. 89-104.

{8] Leray, J., Discussion d'un probléme de Dirichlel. Journal de Mathématiques Pures et
Appliquées, Volume 18, No. 9, 1939, pp. 249-284.

[9] Leray, J. and Schauder, J., Topologie et égquations fonctionelles, Annales Scientifiques de
I'Ecole Normale Supérieure, Paris, Volume 51, Mo. 3, 1934, pp. 45-78. (See sections
19-22).



156 LOUIS NIRENBERG

[10] Lewy, H., Neuer Beweis des analytischen Charakters der Lisungen elliplischer Differentiat-
gleichungen, Mathematische Annalen, Volume 101, 1929, pp. 609-619.

[11] Lewy, H., A priort limstations for solutions of Monge-Ampére equations I, Transactions of
the American Mathematical Society, Volume 37, 1¥35; pp. 417-434; 11, volume 41,
1937, pp. 365-374.

[12] Lichtenstein, L., Neure Entwicklung der Theorie partieller Differentialgleichungen sweiler
Ordnung vom elliptischen Typuas, article in Encyklopadie der Wissenschaften, Volume
11, Part 3, Second Half, pp. 1277-1334.

{13] Morrey, C. B., On the solutions of quasilinear elliplic partial differential equalior.s, Transac-
tions of the American Mathematical Society, Volume 43, 1938, pp. 126-168.

[14) Morrey, C. B., Multiple Integral Problems in the Calculus of Variations and Related Topics,
University of California Publications in Mathematice, new scries, Volume I, 1043,
Chepters 2 and 3.

(18} Petruvsky, I. G., Sur l'analyticité des solutions des sysidmes d'égqualions différentielles,
Recueil Math. (Matematiceskii Sbornik), New Series, Volume 5, No. 47, 1938,
pp. 8-70.

[16] Rado, T., Feometrische Betracktungen uber sweidimensionale reguldre Variationsproblems,
Acta Literarum ac Bcientiarum Regise Universitatis Hungaricas Francisco-Jose-
phine, Sectio Scientiarum Mathematicarum, Sseged, 1024-1926, pp. 228-253.

[17) Schauder, J., Der Pirpunktsalz in Funktionalrdumen, Studia Mathematica, Volume II,
Fasicle IV, 1830, pp. 171-180.

(18] Schauder, J., Ober das Dirichlelsche Problem sm Grossen fir nichtlineare elliptische Differen-
tilgleichungen, Mathematische Zeitachrift, Volume 34, No. 4, 1833, pp. 623-634.

(19) Schauder, J., Uber lineare elliptische Differentialgleschungen sweiler Ordnung, Mathema-
tische Zeitachrift, Volume 38, No. 2, 1934, pp. 257-282.

[20] Shiffman, M., Differentiabilily and analyiseity of solutions of doubls fntegral cariational
problenis, Annals of Mathematics, Volume 48, No. 2, 1947, pp. 374-284.

(21} von Neumaan, J., Jber einen Hilfssals der Variatirnsrechnung, Abbandliagen aus dem
Mathematischen Seminar der Hamburgischen Universitit, Volume 8, 1831, pp.
28-31.




Communications on

PURE AND APPLIED MATHEMATICS

This jourmal publishes papers originating from and solicited by the Institute of
Mathamatical Science of New York University. It is devoted mainly to contributions in
the felds of applied mathematics and mathematicsl physics, and mathematical analyeis.

To Appear in the Next Issue

Uniqueness in Cauchy Problems for Elliptic Systems of Equations

by AvroN DovcLis

Oblique Water Entry of a Wedge
by P. R. GARABEDIAN

A Function-Theoretic Approach to Elliptic Systems of Equctions in Two
Vanables

by Avrox DouagLis

Nonlinear Hyperbolic Equations
by PeTER D. Lax

Flows through Nozzles and Related Problems of Cylindrical and Spherical
Waves

by Yu WaY CaEN

INTERSCIENCE PUBLISHERS, INC.




3

FFERENTIAL AND INTEGRAL CALCULUS

mu“‘

By R. COURANT, Institute for Mathematics and Alechanics, New York University.
Translated by J. E. McSHANE, Professor of Mathematics, University of Virginia.
IN TWO VOLUMES.

Volume I: 1937. Second edition, revised, 630 pages, 136 illus. $6.00

Vclume 11: 1936. 692 pages, 112 illus. $7.50

“The two volumes of Courant’s ‘Differential and Integral Calculus’ form a distinctive
treatise of high quality . . . the style is lively . . . It is certain thz* all Ainerican
mathematiciuns will feel grateful to the author, Prof. Courant, and aiso to the trans-
lator, Prof. McShane, for their cooperation in making this excellent texthook availabie
to our mathematical public.” GEORGE D). BiRKHOFF in Scievice

PURE AND APPLIED MATHEMATICS

A Series of Texts and Monographs
Edited by H. BOHR, R. COURANT and J. J. STOKER

Volume I: .
SUPERSONIC FLOW AND SHOCK WAVES

By R. COURANT and K. O. FRIEDRICHS, Institute for Mathematics and Me-
chanics, New York University. 1948. 480 pages, 216 illus. 6 x 9. $7.50

"This excellent work, which definitely surpasses previous textbooks on the subject in
comprehensiveness and thoroughness of treatment of the fundamental concepts will
doubtless be . . . most helpful to engineers, physicists, and mathematicians alike, and
it is safe to say that no one who has interests in the field of gas dynamics, or indeed
in any other branch of non-linear wave propagation, can afford to be without access
to it.” Philosophical Magasine.

Volume II:

NONLINEAR VIBRATIONS IN MECHANICAL AND ELECTRICAL
SYSTEMS

Boy g g STOKER, Institute for Mathematics and Mechanics, New York University.
1950. 6 x 9. 294 pages, 91 illus. $6.00

“Nonlinear Vibrations is exactly the type of text which will appeal to the engineer
who, today, must struggle with so many nonlinear phenomena produced noa-
cooperative nature.” Stephen J. Zand in Aeronautical Engineering Review

Volume 1l1:

DIRICHLET'’S PRINCIPLE, CONFORMAL MAPPING, AND MINI-
MAL SURFACES

By R. COURANT, Institute for Ma:hematics and Mechanics, New York University.
V\?i‘.h an Appendix by M. Schiffer, Princetor: Utiversity and University of Jerusalem.
1950. 6 x 9. 344 pages, 68 illus. $6.50

“The author presents the modern development of the Dirichlet principle in a man-
ner which is simple, yet independent of the advanced notions of Hilbert space. Physical
interpretations and motivations are stressed throughout, and proofs are given with
clarity and detail, yet with sufficient assumption of an elementary knowledge to at-

tract the reader who is chiefly interested in research in this field.”
P. R. Garabedian in Mathematical Review

INTERSCIENCE PUBLISHERS, INC.

250 Fifth Ave., New York 1, N. Y.




	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059



